You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
249 lines
10 KiB
249 lines
10 KiB
import csv
|
|
import os
|
|
import time
|
|
import urllib
|
|
from functools import partial
|
|
from multiprocessing import Pool
|
|
from os import path
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
|
|
|
from torch import Tensor
|
|
|
|
from .folder import find_classes, make_dataset
|
|
from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg
|
|
from .video_utils import VideoClips
|
|
from .vision import VisionDataset
|
|
|
|
|
|
def _dl_wrap(tarpath: str, videopath: str, line: str) -> None:
|
|
download_and_extract_archive(line, tarpath, videopath)
|
|
|
|
|
|
class Kinetics(VisionDataset):
|
|
"""`Generic Kinetics <https://www.deepmind.com/open-source/kinetics>`_
|
|
dataset.
|
|
|
|
Kinetics-400/600/700 are action recognition video datasets.
|
|
This dataset consider every video as a collection of video clips of fixed size, specified
|
|
by ``frames_per_clip``, where the step in frames between each clip is given by
|
|
``step_between_clips``.
|
|
|
|
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
|
|
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
|
|
elements will come from video 1, and the next three elements from video 2.
|
|
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
|
|
frames in a video might be present.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of the Kinetics Dataset.
|
|
Directory should be structured as follows:
|
|
.. code::
|
|
|
|
root/
|
|
├── split
|
|
│ ├── class1
|
|
│ │ ├── vid1.mp4
|
|
│ │ ├── vid2.mp4
|
|
│ │ ├── vid3.mp4
|
|
│ │ ├── ...
|
|
│ ├── class2
|
|
│ │ ├── vidx.mp4
|
|
│ │ └── ...
|
|
|
|
Note: split is appended automatically using the split argument.
|
|
frames_per_clip (int): number of frames in a clip
|
|
num_classes (int): select between Kinetics-400 (default), Kinetics-600, and Kinetics-700
|
|
split (str): split of the dataset to consider; supports ``"train"`` (default) ``"val"`` ``"test"``
|
|
frame_rate (float): If omitted, interpolate different frame rate for each clip.
|
|
step_between_clips (int): number of frames between each clip
|
|
transform (callable, optional): A function/transform that takes in a TxHxWxC video
|
|
and returns a transformed version.
|
|
download (bool): Download the official version of the dataset to root folder.
|
|
num_workers (int): Use multiple workers for VideoClips creation
|
|
num_download_workers (int): Use multiprocessing in order to speed up download.
|
|
output_format (str, optional): The format of the output video tensors (before transforms).
|
|
Can be either "THWC" or "TCHW" (default).
|
|
Note that in most other utils and datasets, the default is actually "THWC".
|
|
|
|
Returns:
|
|
tuple: A 3-tuple with the following entries:
|
|
|
|
- video (Tensor[T, C, H, W] or Tensor[T, H, W, C]): the `T` video frames in torch.uint8 tensor
|
|
- audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
|
|
and `L` is the number of points in torch.float tensor
|
|
- label (int): class of the video clip
|
|
|
|
Raises:
|
|
RuntimeError: If ``download is True`` and the video archives are already extracted.
|
|
"""
|
|
|
|
_TAR_URLS = {
|
|
"400": "https://s3.amazonaws.com/kinetics/400/{split}/k400_{split}_path.txt",
|
|
"600": "https://s3.amazonaws.com/kinetics/600/{split}/k600_{split}_path.txt",
|
|
"700": "https://s3.amazonaws.com/kinetics/700_2020/{split}/k700_2020_{split}_path.txt",
|
|
}
|
|
_ANNOTATION_URLS = {
|
|
"400": "https://s3.amazonaws.com/kinetics/400/annotations/{split}.csv",
|
|
"600": "https://s3.amazonaws.com/kinetics/600/annotations/{split}.csv",
|
|
"700": "https://s3.amazonaws.com/kinetics/700_2020/annotations/{split}.csv",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
frames_per_clip: int,
|
|
num_classes: str = "400",
|
|
split: str = "train",
|
|
frame_rate: Optional[int] = None,
|
|
step_between_clips: int = 1,
|
|
transform: Optional[Callable] = None,
|
|
extensions: Tuple[str, ...] = ("avi", "mp4"),
|
|
download: bool = False,
|
|
num_download_workers: int = 1,
|
|
num_workers: int = 1,
|
|
_precomputed_metadata: Optional[Dict[str, Any]] = None,
|
|
_video_width: int = 0,
|
|
_video_height: int = 0,
|
|
_video_min_dimension: int = 0,
|
|
_audio_samples: int = 0,
|
|
_audio_channels: int = 0,
|
|
_legacy: bool = False,
|
|
output_format: str = "TCHW",
|
|
) -> None:
|
|
|
|
# TODO: support test
|
|
self.num_classes = verify_str_arg(num_classes, arg="num_classes", valid_values=["400", "600", "700"])
|
|
self.extensions = extensions
|
|
self.num_download_workers = num_download_workers
|
|
|
|
self.root = root
|
|
self._legacy = _legacy
|
|
|
|
if _legacy:
|
|
print("Using legacy structure")
|
|
self.split_folder = root
|
|
self.split = "unknown"
|
|
output_format = "THWC"
|
|
if download:
|
|
raise ValueError("Cannot download the videos using legacy_structure.")
|
|
else:
|
|
self.split_folder = path.join(root, split)
|
|
self.split = verify_str_arg(split, arg="split", valid_values=["train", "val", "test"])
|
|
|
|
if download:
|
|
self.download_and_process_videos()
|
|
|
|
super().__init__(self.root)
|
|
|
|
self.classes, class_to_idx = find_classes(self.split_folder)
|
|
self.samples = make_dataset(self.split_folder, class_to_idx, extensions, is_valid_file=None)
|
|
video_list = [x[0] for x in self.samples]
|
|
self.video_clips = VideoClips(
|
|
video_list,
|
|
frames_per_clip,
|
|
step_between_clips,
|
|
frame_rate,
|
|
_precomputed_metadata,
|
|
num_workers=num_workers,
|
|
_video_width=_video_width,
|
|
_video_height=_video_height,
|
|
_video_min_dimension=_video_min_dimension,
|
|
_audio_samples=_audio_samples,
|
|
_audio_channels=_audio_channels,
|
|
output_format=output_format,
|
|
)
|
|
self.transform = transform
|
|
|
|
def download_and_process_videos(self) -> None:
|
|
"""Downloads all the videos to the _root_ folder in the expected format."""
|
|
tic = time.time()
|
|
self._download_videos()
|
|
toc = time.time()
|
|
print("Elapsed time for downloading in mins ", (toc - tic) / 60)
|
|
self._make_ds_structure()
|
|
toc2 = time.time()
|
|
print("Elapsed time for processing in mins ", (toc2 - toc) / 60)
|
|
print("Elapsed time overall in mins ", (toc2 - tic) / 60)
|
|
|
|
def _download_videos(self) -> None:
|
|
"""download tarballs containing the video to "tars" folder and extract them into the _split_ folder where
|
|
split is one of the official dataset splits.
|
|
|
|
Raises:
|
|
RuntimeError: if download folder exists, break to prevent downloading entire dataset again.
|
|
"""
|
|
if path.exists(self.split_folder):
|
|
raise RuntimeError(
|
|
f"The directory {self.split_folder} already exists. "
|
|
f"If you want to re-download or re-extract the images, delete the directory."
|
|
)
|
|
tar_path = path.join(self.root, "tars")
|
|
file_list_path = path.join(self.root, "files")
|
|
|
|
split_url = self._TAR_URLS[self.num_classes].format(split=self.split)
|
|
split_url_filepath = path.join(file_list_path, path.basename(split_url))
|
|
if not check_integrity(split_url_filepath):
|
|
download_url(split_url, file_list_path)
|
|
with open(split_url_filepath) as file:
|
|
list_video_urls = [urllib.parse.quote(line, safe="/,:") for line in file.read().splitlines()]
|
|
|
|
if self.num_download_workers == 1:
|
|
for line in list_video_urls:
|
|
download_and_extract_archive(line, tar_path, self.split_folder)
|
|
else:
|
|
part = partial(_dl_wrap, tar_path, self.split_folder)
|
|
poolproc = Pool(self.num_download_workers)
|
|
poolproc.map(part, list_video_urls)
|
|
|
|
def _make_ds_structure(self) -> None:
|
|
"""move videos from
|
|
split_folder/
|
|
├── clip1.avi
|
|
├── clip2.avi
|
|
|
|
to the correct format as described below:
|
|
split_folder/
|
|
├── class1
|
|
│ ├── clip1.avi
|
|
|
|
"""
|
|
annotation_path = path.join(self.root, "annotations")
|
|
if not check_integrity(path.join(annotation_path, f"{self.split}.csv")):
|
|
download_url(self._ANNOTATION_URLS[self.num_classes].format(split=self.split), annotation_path)
|
|
annotations = path.join(annotation_path, f"{self.split}.csv")
|
|
|
|
file_fmtstr = "{ytid}_{start:06}_{end:06}.mp4"
|
|
with open(annotations) as csvfile:
|
|
reader = csv.DictReader(csvfile)
|
|
for row in reader:
|
|
f = file_fmtstr.format(
|
|
ytid=row["youtube_id"],
|
|
start=int(row["time_start"]),
|
|
end=int(row["time_end"]),
|
|
)
|
|
label = row["label"].replace(" ", "_").replace("'", "").replace("(", "").replace(")", "")
|
|
os.makedirs(path.join(self.split_folder, label), exist_ok=True)
|
|
downloaded_file = path.join(self.split_folder, f)
|
|
if path.isfile(downloaded_file):
|
|
os.replace(
|
|
downloaded_file,
|
|
path.join(self.split_folder, label, f),
|
|
)
|
|
|
|
@property
|
|
def metadata(self) -> Dict[str, Any]:
|
|
return self.video_clips.metadata
|
|
|
|
def __len__(self) -> int:
|
|
return self.video_clips.num_clips()
|
|
|
|
def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
|
|
video, audio, info, video_idx = self.video_clips.get_clip(idx)
|
|
label = self.samples[video_idx][1]
|
|
|
|
if self.transform is not None:
|
|
video = self.transform(video)
|
|
|
|
return video, audio, label
|