You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

93 lines
3.1 KiB

import os.path
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Union
import numpy as np
from PIL import Image
from .utils import check_integrity, download_url
from .vision import VisionDataset
class SEMEION(VisionDataset):
r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where directory
``semeion.py`` exists.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data"
filename = "semeion.data"
md5_checksum = "cb545d371d2ce14ec121470795a77432"
def __init__(
self,
root: Union[str, Path],
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = True,
) -> None:
super().__init__(root, transform=transform, target_transform=target_transform)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
fp = os.path.join(self.root, self.filename)
data = np.loadtxt(fp)
# convert value to 8 bit unsigned integer
# color (white #255) the pixels
self.data = (data[:, :256] * 255).astype("uint8")
self.data = np.reshape(self.data, (-1, 16, 16))
self.labels = np.nonzero(data[:, 256:])[1]
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], int(self.labels[index])
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img, mode="L")
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return len(self.data)
def _check_integrity(self) -> bool:
root = self.root
fpath = os.path.join(root, self.filename)
if not check_integrity(fpath, self.md5_checksum):
return False
return True
def download(self) -> None:
if self._check_integrity():
print("Files already downloaded and verified")
return
root = self.root
download_url(self.url, root, self.filename, self.md5_checksum)