You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
495 lines
16 KiB
495 lines
16 KiB
from operator import gt, lt
|
|
|
|
from .libmp.backend import xrange
|
|
|
|
from .functions.functions import SpecialFunctions
|
|
from .functions.rszeta import RSCache
|
|
from .calculus.quadrature import QuadratureMethods
|
|
from .calculus.inverselaplace import LaplaceTransformInversionMethods
|
|
from .calculus.calculus import CalculusMethods
|
|
from .calculus.optimization import OptimizationMethods
|
|
from .calculus.odes import ODEMethods
|
|
from .matrices.matrices import MatrixMethods
|
|
from .matrices.calculus import MatrixCalculusMethods
|
|
from .matrices.linalg import LinearAlgebraMethods
|
|
from .matrices.eigen import Eigen
|
|
from .identification import IdentificationMethods
|
|
from .visualization import VisualizationMethods
|
|
|
|
from . import libmp
|
|
|
|
class Context(object):
|
|
pass
|
|
|
|
class StandardBaseContext(Context,
|
|
SpecialFunctions,
|
|
RSCache,
|
|
QuadratureMethods,
|
|
LaplaceTransformInversionMethods,
|
|
CalculusMethods,
|
|
MatrixMethods,
|
|
MatrixCalculusMethods,
|
|
LinearAlgebraMethods,
|
|
Eigen,
|
|
IdentificationMethods,
|
|
OptimizationMethods,
|
|
ODEMethods,
|
|
VisualizationMethods):
|
|
|
|
NoConvergence = libmp.NoConvergence
|
|
ComplexResult = libmp.ComplexResult
|
|
|
|
def __init__(ctx):
|
|
ctx._aliases = {}
|
|
# Call those that need preinitialization (e.g. for wrappers)
|
|
SpecialFunctions.__init__(ctx)
|
|
RSCache.__init__(ctx)
|
|
QuadratureMethods.__init__(ctx)
|
|
LaplaceTransformInversionMethods.__init__(ctx)
|
|
CalculusMethods.__init__(ctx)
|
|
MatrixMethods.__init__(ctx)
|
|
|
|
def _init_aliases(ctx):
|
|
for alias, value in ctx._aliases.items():
|
|
try:
|
|
setattr(ctx, alias, getattr(ctx, value))
|
|
except AttributeError:
|
|
pass
|
|
|
|
_fixed_precision = False
|
|
|
|
# XXX
|
|
verbose = False
|
|
|
|
def warn(ctx, msg):
|
|
print("Warning:", msg)
|
|
|
|
def bad_domain(ctx, msg):
|
|
raise ValueError(msg)
|
|
|
|
def _re(ctx, x):
|
|
if hasattr(x, "real"):
|
|
return x.real
|
|
return x
|
|
|
|
def _im(ctx, x):
|
|
if hasattr(x, "imag"):
|
|
return x.imag
|
|
return ctx.zero
|
|
|
|
def _as_points(ctx, x):
|
|
return x
|
|
|
|
def fneg(ctx, x, **kwargs):
|
|
return -ctx.convert(x)
|
|
|
|
def fadd(ctx, x, y, **kwargs):
|
|
return ctx.convert(x)+ctx.convert(y)
|
|
|
|
def fsub(ctx, x, y, **kwargs):
|
|
return ctx.convert(x)-ctx.convert(y)
|
|
|
|
def fmul(ctx, x, y, **kwargs):
|
|
return ctx.convert(x)*ctx.convert(y)
|
|
|
|
def fdiv(ctx, x, y, **kwargs):
|
|
return ctx.convert(x)/ctx.convert(y)
|
|
|
|
def fsum(ctx, args, absolute=False, squared=False):
|
|
if absolute:
|
|
if squared:
|
|
return sum((abs(x)**2 for x in args), ctx.zero)
|
|
return sum((abs(x) for x in args), ctx.zero)
|
|
if squared:
|
|
return sum((x**2 for x in args), ctx.zero)
|
|
return sum(args, ctx.zero)
|
|
|
|
def fdot(ctx, xs, ys=None, conjugate=False):
|
|
if ys is not None:
|
|
xs = zip(xs, ys)
|
|
if conjugate:
|
|
cf = ctx.conj
|
|
return sum((x*cf(y) for (x,y) in xs), ctx.zero)
|
|
else:
|
|
return sum((x*y for (x,y) in xs), ctx.zero)
|
|
|
|
def fprod(ctx, args):
|
|
prod = ctx.one
|
|
for arg in args:
|
|
prod *= arg
|
|
return prod
|
|
|
|
def nprint(ctx, x, n=6, **kwargs):
|
|
"""
|
|
Equivalent to ``print(nstr(x, n))``.
|
|
"""
|
|
print(ctx.nstr(x, n, **kwargs))
|
|
|
|
def chop(ctx, x, tol=None):
|
|
"""
|
|
Chops off small real or imaginary parts, or converts
|
|
numbers close to zero to exact zeros. The input can be a
|
|
single number or an iterable::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> chop(5+1e-10j, tol=1e-9)
|
|
mpf('5.0')
|
|
>>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2]))
|
|
[1.0, 0.0, 3.0, -4.0, 2.0]
|
|
|
|
The tolerance defaults to ``100*eps``.
|
|
"""
|
|
if tol is None:
|
|
tol = 100*ctx.eps
|
|
try:
|
|
x = ctx.convert(x)
|
|
absx = abs(x)
|
|
if abs(x) < tol:
|
|
return ctx.zero
|
|
if ctx._is_complex_type(x):
|
|
#part_tol = min(tol, absx*tol)
|
|
part_tol = max(tol, absx*tol)
|
|
if abs(x.imag) < part_tol:
|
|
return x.real
|
|
if abs(x.real) < part_tol:
|
|
return ctx.mpc(0, x.imag)
|
|
except TypeError:
|
|
if isinstance(x, ctx.matrix):
|
|
return x.apply(lambda a: ctx.chop(a, tol))
|
|
if hasattr(x, "__iter__"):
|
|
return [ctx.chop(a, tol) for a in x]
|
|
return x
|
|
|
|
def almosteq(ctx, s, t, rel_eps=None, abs_eps=None):
|
|
r"""
|
|
Determine whether the difference between `s` and `t` is smaller
|
|
than a given epsilon, either relatively or absolutely.
|
|
|
|
Both a maximum relative difference and a maximum difference
|
|
('epsilons') may be specified. The absolute difference is
|
|
defined as `|s-t|` and the relative difference is defined
|
|
as `|s-t|/\max(|s|, |t|)`.
|
|
|
|
If only one epsilon is given, both are set to the same value.
|
|
If none is given, both epsilons are set to `2^{-p+m}` where
|
|
`p` is the current working precision and `m` is a small
|
|
integer. The default setting typically allows :func:`~mpmath.almosteq`
|
|
to be used to check for mathematical equality
|
|
in the presence of small rounding errors.
|
|
|
|
**Examples**
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15
|
|
>>> almosteq(3.141592653589793, 3.141592653589790)
|
|
True
|
|
>>> almosteq(3.141592653589793, 3.141592653589700)
|
|
False
|
|
>>> almosteq(3.141592653589793, 3.141592653589700, 1e-10)
|
|
True
|
|
>>> almosteq(1e-20, 2e-20)
|
|
True
|
|
>>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0)
|
|
False
|
|
|
|
"""
|
|
t = ctx.convert(t)
|
|
if abs_eps is None and rel_eps is None:
|
|
rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4)
|
|
if abs_eps is None:
|
|
abs_eps = rel_eps
|
|
elif rel_eps is None:
|
|
rel_eps = abs_eps
|
|
diff = abs(s-t)
|
|
if diff <= abs_eps:
|
|
return True
|
|
abss = abs(s)
|
|
abst = abs(t)
|
|
if abss < abst:
|
|
err = diff/abst
|
|
else:
|
|
err = diff/abss
|
|
return err <= rel_eps
|
|
|
|
def arange(ctx, *args):
|
|
r"""
|
|
This is a generalized version of Python's :func:`~mpmath.range` function
|
|
that accepts fractional endpoints and step sizes and
|
|
returns a list of ``mpf`` instances. Like :func:`~mpmath.range`,
|
|
:func:`~mpmath.arange` can be called with 1, 2 or 3 arguments:
|
|
|
|
``arange(b)``
|
|
`[0, 1, 2, \ldots, x]`
|
|
``arange(a, b)``
|
|
`[a, a+1, a+2, \ldots, x]`
|
|
``arange(a, b, h)``
|
|
`[a, a+h, a+h, \ldots, x]`
|
|
|
|
where `b-1 \le x < b` (in the third case, `b-h \le x < b`).
|
|
|
|
Like Python's :func:`~mpmath.range`, the endpoint is not included. To
|
|
produce ranges where the endpoint is included, :func:`~mpmath.linspace`
|
|
is more convenient.
|
|
|
|
**Examples**
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> arange(4)
|
|
[mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')]
|
|
>>> arange(1, 2, 0.25)
|
|
[mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')]
|
|
>>> arange(1, -1, -0.75)
|
|
[mpf('1.0'), mpf('0.25'), mpf('-0.5')]
|
|
|
|
"""
|
|
if not len(args) <= 3:
|
|
raise TypeError('arange expected at most 3 arguments, got %i'
|
|
% len(args))
|
|
if not len(args) >= 1:
|
|
raise TypeError('arange expected at least 1 argument, got %i'
|
|
% len(args))
|
|
# set default
|
|
a = 0
|
|
dt = 1
|
|
# interpret arguments
|
|
if len(args) == 1:
|
|
b = args[0]
|
|
elif len(args) >= 2:
|
|
a = args[0]
|
|
b = args[1]
|
|
if len(args) == 3:
|
|
dt = args[2]
|
|
a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt)
|
|
assert a + dt != a, 'dt is too small and would cause an infinite loop'
|
|
# adapt code for sign of dt
|
|
if a > b:
|
|
if dt > 0:
|
|
return []
|
|
op = gt
|
|
else:
|
|
if dt < 0:
|
|
return []
|
|
op = lt
|
|
# create list
|
|
result = []
|
|
i = 0
|
|
t = a
|
|
while 1:
|
|
t = a + dt*i
|
|
i += 1
|
|
if op(t, b):
|
|
result.append(t)
|
|
else:
|
|
break
|
|
return result
|
|
|
|
def linspace(ctx, *args, **kwargs):
|
|
"""
|
|
``linspace(a, b, n)`` returns a list of `n` evenly spaced
|
|
samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)``
|
|
is also valid.
|
|
|
|
This function is often more convenient than :func:`~mpmath.arange`
|
|
for partitioning an interval into subintervals, since
|
|
the endpoint is included::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> linspace(1, 4, 4)
|
|
[mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')]
|
|
|
|
You may also provide the keyword argument ``endpoint=False``::
|
|
|
|
>>> linspace(1, 4, 4, endpoint=False)
|
|
[mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')]
|
|
|
|
"""
|
|
if len(args) == 3:
|
|
a = ctx.mpf(args[0])
|
|
b = ctx.mpf(args[1])
|
|
n = int(args[2])
|
|
elif len(args) == 2:
|
|
assert hasattr(args[0], '_mpi_')
|
|
a = args[0].a
|
|
b = args[0].b
|
|
n = int(args[1])
|
|
else:
|
|
raise TypeError('linspace expected 2 or 3 arguments, got %i' \
|
|
% len(args))
|
|
if n < 1:
|
|
raise ValueError('n must be greater than 0')
|
|
if not 'endpoint' in kwargs or kwargs['endpoint']:
|
|
if n == 1:
|
|
return [ctx.mpf(a)]
|
|
step = (b - a) / ctx.mpf(n - 1)
|
|
y = [i*step + a for i in xrange(n)]
|
|
y[-1] = b
|
|
else:
|
|
step = (b - a) / ctx.mpf(n)
|
|
y = [i*step + a for i in xrange(n)]
|
|
return y
|
|
|
|
def cos_sin(ctx, z, **kwargs):
|
|
return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs)
|
|
|
|
def cospi_sinpi(ctx, z, **kwargs):
|
|
return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs)
|
|
|
|
def _default_hyper_maxprec(ctx, p):
|
|
return int(1000 * p**0.25 + 4*p)
|
|
|
|
_gcd = staticmethod(libmp.gcd)
|
|
list_primes = staticmethod(libmp.list_primes)
|
|
isprime = staticmethod(libmp.isprime)
|
|
bernfrac = staticmethod(libmp.bernfrac)
|
|
moebius = staticmethod(libmp.moebius)
|
|
_ifac = staticmethod(libmp.ifac)
|
|
_eulernum = staticmethod(libmp.eulernum)
|
|
_stirling1 = staticmethod(libmp.stirling1)
|
|
_stirling2 = staticmethod(libmp.stirling2)
|
|
|
|
def sum_accurately(ctx, terms, check_step=1):
|
|
prec = ctx.prec
|
|
try:
|
|
extraprec = 10
|
|
while 1:
|
|
ctx.prec = prec + extraprec + 5
|
|
max_mag = ctx.ninf
|
|
s = ctx.zero
|
|
k = 0
|
|
for term in terms():
|
|
s += term
|
|
if (not k % check_step) and term:
|
|
term_mag = ctx.mag(term)
|
|
max_mag = max(max_mag, term_mag)
|
|
sum_mag = ctx.mag(s)
|
|
if sum_mag - term_mag > ctx.prec:
|
|
break
|
|
k += 1
|
|
cancellation = max_mag - sum_mag
|
|
if cancellation != cancellation:
|
|
break
|
|
if cancellation < extraprec or ctx._fixed_precision:
|
|
break
|
|
extraprec += min(ctx.prec, cancellation)
|
|
return s
|
|
finally:
|
|
ctx.prec = prec
|
|
|
|
def mul_accurately(ctx, factors, check_step=1):
|
|
prec = ctx.prec
|
|
try:
|
|
extraprec = 10
|
|
while 1:
|
|
ctx.prec = prec + extraprec + 5
|
|
max_mag = ctx.ninf
|
|
one = ctx.one
|
|
s = one
|
|
k = 0
|
|
for factor in factors():
|
|
s *= factor
|
|
term = factor - one
|
|
if (not k % check_step):
|
|
term_mag = ctx.mag(term)
|
|
max_mag = max(max_mag, term_mag)
|
|
sum_mag = ctx.mag(s-one)
|
|
#if sum_mag - term_mag > ctx.prec:
|
|
# break
|
|
if -term_mag > ctx.prec:
|
|
break
|
|
k += 1
|
|
cancellation = max_mag - sum_mag
|
|
if cancellation != cancellation:
|
|
break
|
|
if cancellation < extraprec or ctx._fixed_precision:
|
|
break
|
|
extraprec += min(ctx.prec, cancellation)
|
|
return s
|
|
finally:
|
|
ctx.prec = prec
|
|
|
|
def power(ctx, x, y):
|
|
r"""Converts `x` and `y` to mpmath numbers and evaluates
|
|
`x^y = \exp(y \log(x))`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 30; mp.pretty = True
|
|
>>> power(2, 0.5)
|
|
1.41421356237309504880168872421
|
|
|
|
This shows the leading few digits of a large Mersenne prime
|
|
(performing the exact calculation ``2**43112609-1`` and
|
|
displaying the result in Python would be very slow)::
|
|
|
|
>>> power(2, 43112609)-1
|
|
3.16470269330255923143453723949e+12978188
|
|
"""
|
|
return ctx.convert(x) ** ctx.convert(y)
|
|
|
|
def _zeta_int(ctx, n):
|
|
return ctx.zeta(n)
|
|
|
|
def maxcalls(ctx, f, N):
|
|
"""
|
|
Return a wrapped copy of *f* that raises ``NoConvergence`` when *f*
|
|
has been called more than *N* times::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15
|
|
>>> f = maxcalls(sin, 10)
|
|
>>> print(sum(f(n) for n in range(10)))
|
|
1.95520948210738
|
|
>>> f(10) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
NoConvergence: maxcalls: function evaluated 10 times
|
|
|
|
"""
|
|
counter = [0]
|
|
def f_maxcalls_wrapped(*args, **kwargs):
|
|
counter[0] += 1
|
|
if counter[0] > N:
|
|
raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N)
|
|
return f(*args, **kwargs)
|
|
return f_maxcalls_wrapped
|
|
|
|
def memoize(ctx, f):
|
|
"""
|
|
Return a wrapped copy of *f* that caches computed values, i.e.
|
|
a memoized copy of *f*. Values are only reused if the cached precision
|
|
is equal to or higher than the working precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> f = memoize(maxcalls(sin, 1))
|
|
>>> f(2)
|
|
0.909297426825682
|
|
>>> f(2)
|
|
0.909297426825682
|
|
>>> mp.dps = 25
|
|
>>> f(2) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
NoConvergence: maxcalls: function evaluated 1 times
|
|
|
|
"""
|
|
f_cache = {}
|
|
def f_cached(*args, **kwargs):
|
|
if kwargs:
|
|
key = args, tuple(kwargs.items())
|
|
else:
|
|
key = args
|
|
prec = ctx.prec
|
|
if key in f_cache:
|
|
cprec, cvalue = f_cache[key]
|
|
if cprec >= prec:
|
|
return +cvalue
|
|
value = f(*args, **kwargs)
|
|
f_cache[key] = (prec, value)
|
|
return value
|
|
f_cached.__name__ = f.__name__
|
|
f_cached.__doc__ = f.__doc__
|
|
return f_cached
|