You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
10 KiB
314 lines
10 KiB
"""
|
|
Plotting (requires matplotlib)
|
|
"""
|
|
|
|
from colorsys import hsv_to_rgb, hls_to_rgb
|
|
from .libmp import NoConvergence
|
|
from .libmp.backend import xrange
|
|
|
|
class VisualizationMethods(object):
|
|
plot_ignore = (ValueError, ArithmeticError, ZeroDivisionError, NoConvergence)
|
|
|
|
def plot(ctx, f, xlim=[-5,5], ylim=None, points=200, file=None, dpi=None,
|
|
singularities=[], axes=None):
|
|
r"""
|
|
Shows a simple 2D plot of a function `f(x)` or list of functions
|
|
`[f_0(x), f_1(x), \ldots, f_n(x)]` over a given interval
|
|
specified by *xlim*. Some examples::
|
|
|
|
plot(lambda x: exp(x)*li(x), [1, 4])
|
|
plot([cos, sin], [-4, 4])
|
|
plot([fresnels, fresnelc], [-4, 4])
|
|
plot([sqrt, cbrt], [-4, 4])
|
|
plot(lambda t: zeta(0.5+t*j), [-20, 20])
|
|
plot([floor, ceil, abs, sign], [-5, 5])
|
|
|
|
Points where the function raises a numerical exception or
|
|
returns an infinite value are removed from the graph.
|
|
Singularities can also be excluded explicitly
|
|
as follows (useful for removing erroneous vertical lines)::
|
|
|
|
plot(cot, ylim=[-5, 5]) # bad
|
|
plot(cot, ylim=[-5, 5], singularities=[-pi, 0, pi]) # good
|
|
|
|
For parts where the function assumes complex values, the
|
|
real part is plotted with dashes and the imaginary part
|
|
is plotted with dots.
|
|
|
|
.. note :: This function requires matplotlib (pylab).
|
|
"""
|
|
if file:
|
|
axes = None
|
|
fig = None
|
|
if not axes:
|
|
import pylab
|
|
fig = pylab.figure()
|
|
axes = fig.add_subplot(111)
|
|
if not isinstance(f, (tuple, list)):
|
|
f = [f]
|
|
a, b = xlim
|
|
colors = ['b', 'r', 'g', 'm', 'k']
|
|
for n, func in enumerate(f):
|
|
x = ctx.arange(a, b, (b-a)/float(points))
|
|
segments = []
|
|
segment = []
|
|
in_complex = False
|
|
for i in xrange(len(x)):
|
|
try:
|
|
if i != 0:
|
|
for sing in singularities:
|
|
if x[i-1] <= sing and x[i] >= sing:
|
|
raise ValueError
|
|
v = func(x[i])
|
|
if ctx.isnan(v) or abs(v) > 1e300:
|
|
raise ValueError
|
|
if hasattr(v, "imag") and v.imag:
|
|
re = float(v.real)
|
|
im = float(v.imag)
|
|
if not in_complex:
|
|
in_complex = True
|
|
segments.append(segment)
|
|
segment = []
|
|
segment.append((float(x[i]), re, im))
|
|
else:
|
|
if in_complex:
|
|
in_complex = False
|
|
segments.append(segment)
|
|
segment = []
|
|
if hasattr(v, "real"):
|
|
v = v.real
|
|
segment.append((float(x[i]), v))
|
|
except ctx.plot_ignore:
|
|
if segment:
|
|
segments.append(segment)
|
|
segment = []
|
|
if segment:
|
|
segments.append(segment)
|
|
for segment in segments:
|
|
x = [s[0] for s in segment]
|
|
y = [s[1] for s in segment]
|
|
if not x:
|
|
continue
|
|
c = colors[n % len(colors)]
|
|
if len(segment[0]) == 3:
|
|
z = [s[2] for s in segment]
|
|
axes.plot(x, y, '--'+c, linewidth=3)
|
|
axes.plot(x, z, ':'+c, linewidth=3)
|
|
else:
|
|
axes.plot(x, y, c, linewidth=3)
|
|
axes.set_xlim([float(_) for _ in xlim])
|
|
if ylim:
|
|
axes.set_ylim([float(_) for _ in ylim])
|
|
axes.set_xlabel('x')
|
|
axes.set_ylabel('f(x)')
|
|
axes.grid(True)
|
|
if fig:
|
|
if file:
|
|
pylab.savefig(file, dpi=dpi)
|
|
else:
|
|
pylab.show()
|
|
|
|
def default_color_function(ctx, z):
|
|
if ctx.isinf(z):
|
|
return (1.0, 1.0, 1.0)
|
|
if ctx.isnan(z):
|
|
return (0.5, 0.5, 0.5)
|
|
pi = 3.1415926535898
|
|
a = (float(ctx.arg(z)) + ctx.pi) / (2*ctx.pi)
|
|
a = (a + 0.5) % 1.0
|
|
b = 1.0 - float(1/(1.0+abs(z)**0.3))
|
|
return hls_to_rgb(a, b, 0.8)
|
|
|
|
blue_orange_colors = [
|
|
(-1.0, (0.0, 0.0, 0.0)),
|
|
(-0.95, (0.1, 0.2, 0.5)), # dark blue
|
|
(-0.5, (0.0, 0.5, 1.0)), # blueish
|
|
(-0.05, (0.4, 0.8, 0.8)), # cyanish
|
|
( 0.0, (1.0, 1.0, 1.0)),
|
|
( 0.05, (1.0, 0.9, 0.3)), # yellowish
|
|
( 0.5, (0.9, 0.5, 0.0)), # orangeish
|
|
( 0.95, (0.7, 0.1, 0.0)), # redish
|
|
( 1.0, (0.0, 0.0, 0.0)),
|
|
( 2.0, (0.0, 0.0, 0.0)),
|
|
]
|
|
|
|
def phase_color_function(ctx, z):
|
|
if ctx.isinf(z):
|
|
return (1.0, 1.0, 1.0)
|
|
if ctx.isnan(z):
|
|
return (0.5, 0.5, 0.5)
|
|
pi = 3.1415926535898
|
|
w = float(ctx.arg(z)) / pi
|
|
w = max(min(w, 1.0), -1.0)
|
|
for i in range(1,len(blue_orange_colors)):
|
|
if blue_orange_colors[i][0] > w:
|
|
a, (ra, ga, ba) = blue_orange_colors[i-1]
|
|
b, (rb, gb, bb) = blue_orange_colors[i]
|
|
s = (w-a) / (b-a)
|
|
return ra+(rb-ra)*s, ga+(gb-ga)*s, ba+(bb-ba)*s
|
|
|
|
def cplot(ctx, f, re=[-5,5], im=[-5,5], points=2000, color=None,
|
|
verbose=False, file=None, dpi=None, axes=None):
|
|
"""
|
|
Plots the given complex-valued function *f* over a rectangular part
|
|
of the complex plane specified by the pairs of intervals *re* and *im*.
|
|
For example::
|
|
|
|
cplot(lambda z: z, [-2, 2], [-10, 10])
|
|
cplot(exp)
|
|
cplot(zeta, [0, 1], [0, 50])
|
|
|
|
By default, the complex argument (phase) is shown as color (hue) and
|
|
the magnitude is show as brightness. You can also supply a
|
|
custom color function (*color*). This function should take a
|
|
complex number as input and return an RGB 3-tuple containing
|
|
floats in the range 0.0-1.0.
|
|
|
|
Alternatively, you can select a builtin color function by passing
|
|
a string as *color*:
|
|
|
|
* "default" - default color scheme
|
|
* "phase" - a color scheme that only renders the phase of the function,
|
|
with white for positive reals, black for negative reals, gold in the
|
|
upper half plane, and blue in the lower half plane.
|
|
|
|
To obtain a sharp image, the number of points may need to be
|
|
increased to 100,000 or thereabout. Since evaluating the
|
|
function that many times is likely to be slow, the 'verbose'
|
|
option is useful to display progress.
|
|
|
|
.. note :: This function requires matplotlib (pylab).
|
|
"""
|
|
if color is None or color == "default":
|
|
color = ctx.default_color_function
|
|
if color == "phase":
|
|
color = ctx.phase_color_function
|
|
import pylab
|
|
if file:
|
|
axes = None
|
|
fig = None
|
|
if not axes:
|
|
fig = pylab.figure()
|
|
axes = fig.add_subplot(111)
|
|
rea, reb = re
|
|
ima, imb = im
|
|
dre = reb - rea
|
|
dim = imb - ima
|
|
M = int(ctx.sqrt(points*dre/dim)+1)
|
|
N = int(ctx.sqrt(points*dim/dre)+1)
|
|
x = pylab.linspace(rea, reb, M)
|
|
y = pylab.linspace(ima, imb, N)
|
|
# Note: we have to be careful to get the right rotation.
|
|
# Test with these plots:
|
|
# cplot(lambda z: z if z.real < 0 else 0)
|
|
# cplot(lambda z: z if z.imag < 0 else 0)
|
|
w = pylab.zeros((N, M, 3))
|
|
for n in xrange(N):
|
|
for m in xrange(M):
|
|
z = ctx.mpc(x[m], y[n])
|
|
try:
|
|
v = color(f(z))
|
|
except ctx.plot_ignore:
|
|
v = (0.5, 0.5, 0.5)
|
|
w[n,m] = v
|
|
if verbose:
|
|
print(str(n) + ' of ' + str(N))
|
|
rea, reb, ima, imb = [float(_) for _ in [rea, reb, ima, imb]]
|
|
axes.imshow(w, extent=(rea, reb, ima, imb), origin='lower')
|
|
axes.set_xlabel('Re(z)')
|
|
axes.set_ylabel('Im(z)')
|
|
if fig:
|
|
if file:
|
|
pylab.savefig(file, dpi=dpi)
|
|
else:
|
|
pylab.show()
|
|
|
|
def splot(ctx, f, u=[-5,5], v=[-5,5], points=100, keep_aspect=True, \
|
|
wireframe=False, file=None, dpi=None, axes=None):
|
|
"""
|
|
Plots the surface defined by `f`.
|
|
|
|
If `f` returns a single component, then this plots the surface
|
|
defined by `z = f(x,y)` over the rectangular domain with
|
|
`x = u` and `y = v`.
|
|
|
|
If `f` returns three components, then this plots the parametric
|
|
surface `x, y, z = f(u,v)` over the pairs of intervals `u` and `v`.
|
|
|
|
For example, to plot a simple function::
|
|
|
|
>>> from mpmath import *
|
|
>>> f = lambda x, y: sin(x+y)*cos(y)
|
|
>>> splot(f, [-pi,pi], [-pi,pi]) # doctest: +SKIP
|
|
|
|
Plotting a donut::
|
|
|
|
>>> r, R = 1, 2.5
|
|
>>> f = lambda u, v: [r*cos(u), (R+r*sin(u))*cos(v), (R+r*sin(u))*sin(v)]
|
|
>>> splot(f, [0, 2*pi], [0, 2*pi]) # doctest: +SKIP
|
|
|
|
.. note :: This function requires matplotlib (pylab) 0.98.5.3 or higher.
|
|
"""
|
|
import pylab
|
|
import mpl_toolkits.mplot3d as mplot3d
|
|
if file:
|
|
axes = None
|
|
fig = None
|
|
if not axes:
|
|
fig = pylab.figure()
|
|
axes = mplot3d.axes3d.Axes3D(fig)
|
|
ua, ub = u
|
|
va, vb = v
|
|
du = ub - ua
|
|
dv = vb - va
|
|
if not isinstance(points, (list, tuple)):
|
|
points = [points, points]
|
|
M, N = points
|
|
u = pylab.linspace(ua, ub, M)
|
|
v = pylab.linspace(va, vb, N)
|
|
x, y, z = [pylab.zeros((M, N)) for i in xrange(3)]
|
|
xab, yab, zab = [[0, 0] for i in xrange(3)]
|
|
for n in xrange(N):
|
|
for m in xrange(M):
|
|
fdata = f(ctx.convert(u[m]), ctx.convert(v[n]))
|
|
try:
|
|
x[m,n], y[m,n], z[m,n] = fdata
|
|
except TypeError:
|
|
x[m,n], y[m,n], z[m,n] = u[m], v[n], fdata
|
|
for c, cab in [(x[m,n], xab), (y[m,n], yab), (z[m,n], zab)]:
|
|
if c < cab[0]:
|
|
cab[0] = c
|
|
if c > cab[1]:
|
|
cab[1] = c
|
|
if wireframe:
|
|
axes.plot_wireframe(x, y, z, rstride=4, cstride=4)
|
|
else:
|
|
axes.plot_surface(x, y, z, rstride=4, cstride=4)
|
|
axes.set_xlabel('x')
|
|
axes.set_ylabel('y')
|
|
axes.set_zlabel('z')
|
|
if keep_aspect:
|
|
dx, dy, dz = [cab[1] - cab[0] for cab in [xab, yab, zab]]
|
|
maxd = max(dx, dy, dz)
|
|
if dx < maxd:
|
|
delta = maxd - dx
|
|
axes.set_xlim3d(xab[0] - delta / 2.0, xab[1] + delta / 2.0)
|
|
if dy < maxd:
|
|
delta = maxd - dy
|
|
axes.set_ylim3d(yab[0] - delta / 2.0, yab[1] + delta / 2.0)
|
|
if dz < maxd:
|
|
delta = maxd - dz
|
|
axes.set_zlim3d(zab[0] - delta / 2.0, zab[1] + delta / 2.0)
|
|
if fig:
|
|
if file:
|
|
pylab.savefig(file, dpi=dpi)
|
|
else:
|
|
pylab.show()
|
|
|
|
|
|
VisualizationMethods.plot = plot
|
|
VisualizationMethods.default_color_function = default_color_function
|
|
VisualizationMethods.phase_color_function = phase_color_function
|
|
VisualizationMethods.cplot = cplot
|
|
VisualizationMethods.splot = splot
|