You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2884 lines
80 KiB
2884 lines
80 KiB
from sympy.core import Expr, S, oo, pi, sympify
|
|
from sympy.core.evalf import N
|
|
from sympy.core.sorting import default_sort_key, ordered
|
|
from sympy.core.symbol import _symbol, Dummy, Symbol
|
|
from sympy.functions.elementary.complexes import sign
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.functions.elementary.trigonometric import cos, sin, tan
|
|
from .ellipse import Circle
|
|
from .entity import GeometryEntity, GeometrySet
|
|
from .exceptions import GeometryError
|
|
from .line import Line, Segment, Ray
|
|
from .point import Point
|
|
from sympy.logic import And
|
|
from sympy.matrices import Matrix
|
|
from sympy.simplify.simplify import simplify
|
|
from sympy.solvers.solvers import solve
|
|
from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
|
|
from sympy.utilities.misc import as_int, func_name
|
|
|
|
from mpmath.libmp.libmpf import prec_to_dps
|
|
|
|
import warnings
|
|
|
|
|
|
x, y, T = [Dummy('polygon_dummy', real=True) for i in range(3)]
|
|
|
|
|
|
class Polygon(GeometrySet):
|
|
"""A two-dimensional polygon.
|
|
|
|
A simple polygon in space. Can be constructed from a sequence of points
|
|
or from a center, radius, number of sides and rotation angle.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
vertices
|
|
A sequence of points.
|
|
|
|
n : int, optional
|
|
If $> 0$, an n-sided RegularPolygon is created.
|
|
Default value is $0$.
|
|
|
|
Attributes
|
|
==========
|
|
|
|
area
|
|
angles
|
|
perimeter
|
|
vertices
|
|
centroid
|
|
sides
|
|
|
|
Raises
|
|
======
|
|
|
|
GeometryError
|
|
If all parameters are not Points.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
|
|
|
|
Notes
|
|
=====
|
|
|
|
Polygons are treated as closed paths rather than 2D areas so
|
|
some calculations can be be negative or positive (e.g., area)
|
|
based on the orientation of the points.
|
|
|
|
Any consecutive identical points are reduced to a single point
|
|
and any points collinear and between two points will be removed
|
|
unless they are needed to define an explicit intersection (see examples).
|
|
|
|
A Triangle, Segment or Point will be returned when there are 3 or
|
|
fewer points provided.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, pi
|
|
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
|
|
>>> Polygon(p1, p2, p3, p4)
|
|
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
|
|
>>> Polygon(p1, p2)
|
|
Segment2D(Point2D(0, 0), Point2D(1, 0))
|
|
>>> Polygon(p1, p2, p5)
|
|
Segment2D(Point2D(0, 0), Point2D(3, 0))
|
|
|
|
The area of a polygon is calculated as positive when vertices are
|
|
traversed in a ccw direction. When the sides of a polygon cross the
|
|
area will have positive and negative contributions. The following
|
|
defines a Z shape where the bottom right connects back to the top
|
|
left.
|
|
|
|
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
|
|
0
|
|
|
|
When the keyword `n` is used to define the number of sides of the
|
|
Polygon then a RegularPolygon is created and the other arguments are
|
|
interpreted as center, radius and rotation. The unrotated RegularPolygon
|
|
will always have a vertex at Point(r, 0) where `r` is the radius of the
|
|
circle that circumscribes the RegularPolygon. Its method `spin` can be
|
|
used to increment that angle.
|
|
|
|
>>> p = Polygon((0,0), 1, n=3)
|
|
>>> p
|
|
RegularPolygon(Point2D(0, 0), 1, 3, 0)
|
|
>>> p.vertices[0]
|
|
Point2D(1, 0)
|
|
>>> p.args[0]
|
|
Point2D(0, 0)
|
|
>>> p.spin(pi/2)
|
|
>>> p.vertices[0]
|
|
Point2D(0, 1)
|
|
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
def __new__(cls, *args, n = 0, **kwargs):
|
|
if n:
|
|
args = list(args)
|
|
# return a virtual polygon with n sides
|
|
if len(args) == 2: # center, radius
|
|
args.append(n)
|
|
elif len(args) == 3: # center, radius, rotation
|
|
args.insert(2, n)
|
|
return RegularPolygon(*args, **kwargs)
|
|
|
|
vertices = [Point(a, dim=2, **kwargs) for a in args]
|
|
|
|
# remove consecutive duplicates
|
|
nodup = []
|
|
for p in vertices:
|
|
if nodup and p == nodup[-1]:
|
|
continue
|
|
nodup.append(p)
|
|
if len(nodup) > 1 and nodup[-1] == nodup[0]:
|
|
nodup.pop() # last point was same as first
|
|
|
|
# remove collinear points
|
|
i = -3
|
|
while i < len(nodup) - 3 and len(nodup) > 2:
|
|
a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
|
|
if Point.is_collinear(a, b, c):
|
|
nodup.pop(i + 1)
|
|
if a == c:
|
|
nodup.pop(i)
|
|
else:
|
|
i += 1
|
|
|
|
vertices = list(nodup)
|
|
|
|
if len(vertices) > 3:
|
|
return GeometryEntity.__new__(cls, *vertices, **kwargs)
|
|
elif len(vertices) == 3:
|
|
return Triangle(*vertices, **kwargs)
|
|
elif len(vertices) == 2:
|
|
return Segment(*vertices, **kwargs)
|
|
else:
|
|
return Point(*vertices, **kwargs)
|
|
|
|
@property
|
|
def area(self):
|
|
"""
|
|
The area of the polygon.
|
|
|
|
Notes
|
|
=====
|
|
|
|
The area calculation can be positive or negative based on the
|
|
orientation of the points. If any side of the polygon crosses
|
|
any other side, there will be areas having opposite signs.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.ellipse.Ellipse.area
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.area
|
|
3
|
|
|
|
In the Z shaped polygon (with the lower right connecting back
|
|
to the upper left) the areas cancel out:
|
|
|
|
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
|
|
>>> Z.area
|
|
0
|
|
|
|
In the M shaped polygon, areas do not cancel because no side
|
|
crosses any other (though there is a point of contact).
|
|
|
|
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
|
|
>>> M.area
|
|
-3/2
|
|
|
|
"""
|
|
area = 0
|
|
args = self.args
|
|
for i in range(len(args)):
|
|
x1, y1 = args[i - 1].args
|
|
x2, y2 = args[i].args
|
|
area += x1*y2 - x2*y1
|
|
return simplify(area) / 2
|
|
|
|
@staticmethod
|
|
def _isright(a, b, c):
|
|
"""Return True/False for cw/ccw orientation.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
|
|
>>> Polygon._isright(a, b, c)
|
|
True
|
|
>>> Polygon._isright(a, c, b)
|
|
False
|
|
"""
|
|
ba = b - a
|
|
ca = c - a
|
|
t_area = simplify(ba.x*ca.y - ca.x*ba.y)
|
|
res = t_area.is_nonpositive
|
|
if res is None:
|
|
raise ValueError("Can't determine orientation")
|
|
return res
|
|
|
|
@property
|
|
def angles(self):
|
|
"""The internal angle at each vertex.
|
|
|
|
Returns
|
|
=======
|
|
|
|
angles : dict
|
|
A dictionary where each key is a vertex and each value is the
|
|
internal angle at that vertex. The vertices are represented as
|
|
Points.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.angles[p1]
|
|
pi/2
|
|
>>> poly.angles[p2]
|
|
acos(-4*sqrt(17)/17)
|
|
|
|
"""
|
|
|
|
# Determine orientation of points
|
|
args = self.vertices
|
|
cw = self._isright(args[-1], args[0], args[1])
|
|
|
|
ret = {}
|
|
for i in range(len(args)):
|
|
a, b, c = args[i - 2], args[i - 1], args[i]
|
|
ang = Ray(b, a).angle_between(Ray(b, c))
|
|
if cw ^ self._isright(a, b, c):
|
|
ret[b] = 2*S.Pi - ang
|
|
else:
|
|
ret[b] = ang
|
|
return ret
|
|
|
|
@property
|
|
def ambient_dimension(self):
|
|
return self.vertices[0].ambient_dimension
|
|
|
|
@property
|
|
def perimeter(self):
|
|
"""The perimeter of the polygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
perimeter : number or Basic instance
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.Segment.length
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.perimeter
|
|
sqrt(17) + 7
|
|
"""
|
|
p = 0
|
|
args = self.vertices
|
|
for i in range(len(args)):
|
|
p += args[i - 1].distance(args[i])
|
|
return simplify(p)
|
|
|
|
@property
|
|
def vertices(self):
|
|
"""The vertices of the polygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
vertices : list of Points
|
|
|
|
Notes
|
|
=====
|
|
|
|
When iterating over the vertices, it is more efficient to index self
|
|
rather than to request the vertices and index them. Only use the
|
|
vertices when you want to process all of them at once. This is even
|
|
more important with RegularPolygons that calculate each vertex.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.vertices
|
|
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
|
|
>>> poly.vertices[0]
|
|
Point2D(0, 0)
|
|
|
|
"""
|
|
return list(self.args)
|
|
|
|
@property
|
|
def centroid(self):
|
|
"""The centroid of the polygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
centroid : Point
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.util.centroid
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.centroid
|
|
Point2D(31/18, 11/18)
|
|
|
|
"""
|
|
A = 1/(6*self.area)
|
|
cx, cy = 0, 0
|
|
args = self.args
|
|
for i in range(len(args)):
|
|
x1, y1 = args[i - 1].args
|
|
x2, y2 = args[i].args
|
|
v = x1*y2 - x2*y1
|
|
cx += v*(x1 + x2)
|
|
cy += v*(y1 + y2)
|
|
return Point(simplify(A*cx), simplify(A*cy))
|
|
|
|
|
|
def second_moment_of_area(self, point=None):
|
|
"""Returns the second moment and product moment of area of a two dimensional polygon.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
point : Point, two-tuple of sympifyable objects, or None(default=None)
|
|
point is the point about which second moment of area is to be found.
|
|
If "point=None" it will be calculated about the axis passing through the
|
|
centroid of the polygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
I_xx, I_yy, I_xy : number or SymPy expression
|
|
I_xx, I_yy are second moment of area of a two dimensional polygon.
|
|
I_xy is product moment of area of a two dimensional polygon.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, symbols
|
|
>>> a, b = symbols('a, b')
|
|
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
|
|
>>> rectangle = Polygon(p1, p2, p3, p4)
|
|
>>> rectangle.second_moment_of_area()
|
|
(a*b**3/12, a**3*b/12, 0)
|
|
>>> rectangle.second_moment_of_area(p5)
|
|
(a*b**3/9, a**3*b/9, a**2*b**2/36)
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Second_moment_of_area
|
|
|
|
"""
|
|
|
|
I_xx, I_yy, I_xy = 0, 0, 0
|
|
args = self.vertices
|
|
for i in range(len(args)):
|
|
x1, y1 = args[i-1].args
|
|
x2, y2 = args[i].args
|
|
v = x1*y2 - x2*y1
|
|
I_xx += (y1**2 + y1*y2 + y2**2)*v
|
|
I_yy += (x1**2 + x1*x2 + x2**2)*v
|
|
I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
|
|
A = self.area
|
|
c_x = self.centroid[0]
|
|
c_y = self.centroid[1]
|
|
# parallel axis theorem
|
|
I_xx_c = (I_xx/12) - (A*(c_y**2))
|
|
I_yy_c = (I_yy/12) - (A*(c_x**2))
|
|
I_xy_c = (I_xy/24) - (A*(c_x*c_y))
|
|
if point is None:
|
|
return I_xx_c, I_yy_c, I_xy_c
|
|
|
|
I_xx = (I_xx_c + A*((point[1]-c_y)**2))
|
|
I_yy = (I_yy_c + A*((point[0]-c_x)**2))
|
|
I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
|
|
|
|
return I_xx, I_yy, I_xy
|
|
|
|
|
|
def first_moment_of_area(self, point=None):
|
|
"""
|
|
Returns the first moment of area of a two-dimensional polygon with
|
|
respect to a certain point of interest.
|
|
|
|
First moment of area is a measure of the distribution of the area
|
|
of a polygon in relation to an axis. The first moment of area of
|
|
the entire polygon about its own centroid is always zero. Therefore,
|
|
here it is calculated for an area, above or below a certain point
|
|
of interest, that makes up a smaller portion of the polygon. This
|
|
area is bounded by the point of interest and the extreme end
|
|
(top or bottom) of the polygon. The first moment for this area is
|
|
is then determined about the centroidal axis of the initial polygon.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD
|
|
.. [2] https://mechanicalc.com/reference/cross-sections
|
|
|
|
Parameters
|
|
==========
|
|
|
|
point: Point, two-tuple of sympifyable objects, or None (default=None)
|
|
point is the point above or below which the area of interest lies
|
|
If ``point=None`` then the centroid acts as the point of interest.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Q_x, Q_y: number or SymPy expressions
|
|
Q_x is the first moment of area about the x-axis
|
|
Q_y is the first moment of area about the y-axis
|
|
A negative sign indicates that the section modulus is
|
|
determined for a section below (or left of) the centroidal axis
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> a, b = 50, 10
|
|
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
|
>>> p = Polygon(p1, p2, p3, p4)
|
|
>>> p.first_moment_of_area()
|
|
(625, 3125)
|
|
>>> p.first_moment_of_area(point=Point(30, 7))
|
|
(525, 3000)
|
|
"""
|
|
if point:
|
|
xc, yc = self.centroid
|
|
else:
|
|
point = self.centroid
|
|
xc, yc = point
|
|
|
|
h_line = Line(point, slope=0)
|
|
v_line = Line(point, slope=S.Infinity)
|
|
|
|
h_poly = self.cut_section(h_line)
|
|
v_poly = self.cut_section(v_line)
|
|
|
|
poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1]
|
|
poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1]
|
|
|
|
Q_x = (poly_1.centroid.y - yc)*poly_1.area
|
|
Q_y = (poly_2.centroid.x - xc)*poly_2.area
|
|
|
|
return Q_x, Q_y
|
|
|
|
|
|
def polar_second_moment_of_area(self):
|
|
"""Returns the polar modulus of a two-dimensional polygon
|
|
|
|
It is a constituent of the second moment of area, linked through
|
|
the perpendicular axis theorem. While the planar second moment of
|
|
area describes an object's resistance to deflection (bending) when
|
|
subjected to a force applied to a plane parallel to the central
|
|
axis, the polar second moment of area describes an object's
|
|
resistance to deflection when subjected to a moment applied in a
|
|
plane perpendicular to the object's central axis (i.e. parallel to
|
|
the cross-section)
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, symbols
|
|
>>> a, b = symbols('a, b')
|
|
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
|
>>> rectangle.polar_second_moment_of_area()
|
|
a**3*b/12 + a*b**3/12
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
|
|
|
|
"""
|
|
second_moment = self.second_moment_of_area()
|
|
return second_moment[0] + second_moment[1]
|
|
|
|
|
|
def section_modulus(self, point=None):
|
|
"""Returns a tuple with the section modulus of a two-dimensional
|
|
polygon.
|
|
|
|
Section modulus is a geometric property of a polygon defined as the
|
|
ratio of second moment of area to the distance of the extreme end of
|
|
the polygon from the centroidal axis.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
point : Point, two-tuple of sympifyable objects, or None(default=None)
|
|
point is the point at which section modulus is to be found.
|
|
If "point=None" it will be calculated for the point farthest from the
|
|
centroidal axis of the polygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
S_x, S_y: numbers or SymPy expressions
|
|
S_x is the section modulus with respect to the x-axis
|
|
S_y is the section modulus with respect to the y-axis
|
|
A negative sign indicates that the section modulus is
|
|
determined for a point below the centroidal axis
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import symbols, Polygon, Point
|
|
>>> a, b = symbols('a, b', positive=True)
|
|
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
|
>>> rectangle.section_modulus()
|
|
(a*b**2/6, a**2*b/6)
|
|
>>> rectangle.section_modulus(Point(a/4, b/4))
|
|
(-a*b**2/3, -a**2*b/3)
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Section_modulus
|
|
|
|
"""
|
|
x_c, y_c = self.centroid
|
|
if point is None:
|
|
# taking x and y as maximum distances from centroid
|
|
x_min, y_min, x_max, y_max = self.bounds
|
|
y = max(y_c - y_min, y_max - y_c)
|
|
x = max(x_c - x_min, x_max - x_c)
|
|
else:
|
|
# taking x and y as distances of the given point from the centroid
|
|
y = point.y - y_c
|
|
x = point.x - x_c
|
|
|
|
second_moment= self.second_moment_of_area()
|
|
S_x = second_moment[0]/y
|
|
S_y = second_moment[1]/x
|
|
|
|
return S_x, S_y
|
|
|
|
|
|
@property
|
|
def sides(self):
|
|
"""The directed line segments that form the sides of the polygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
sides : list of sides
|
|
Each side is a directed Segment.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.Segment
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.sides
|
|
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
|
|
Segment2D(Point2D(1, 0), Point2D(5, 1)),
|
|
Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
|
|
|
|
"""
|
|
res = []
|
|
args = self.vertices
|
|
for i in range(-len(args), 0):
|
|
res.append(Segment(args[i], args[i + 1]))
|
|
return res
|
|
|
|
@property
|
|
def bounds(self):
|
|
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
|
rectangle for the geometric figure.
|
|
|
|
"""
|
|
|
|
verts = self.vertices
|
|
xs = [p.x for p in verts]
|
|
ys = [p.y for p in verts]
|
|
return (min(xs), min(ys), max(xs), max(ys))
|
|
|
|
def is_convex(self):
|
|
"""Is the polygon convex?
|
|
|
|
A polygon is convex if all its interior angles are less than 180
|
|
degrees and there are no intersections between sides.
|
|
|
|
Returns
|
|
=======
|
|
|
|
is_convex : boolean
|
|
True if this polygon is convex, False otherwise.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.util.convex_hull
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> poly.is_convex()
|
|
True
|
|
|
|
"""
|
|
# Determine orientation of points
|
|
args = self.vertices
|
|
cw = self._isright(args[-2], args[-1], args[0])
|
|
for i in range(1, len(args)):
|
|
if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
|
|
return False
|
|
# check for intersecting sides
|
|
sides = self.sides
|
|
for i, si in enumerate(sides):
|
|
pts = si.args
|
|
# exclude the sides connected to si
|
|
for j in range(1 if i == len(sides) - 1 else 0, i - 1):
|
|
sj = sides[j]
|
|
if sj.p1 not in pts and sj.p2 not in pts:
|
|
hit = si.intersection(sj)
|
|
if hit:
|
|
return False
|
|
return True
|
|
|
|
def encloses_point(self, p):
|
|
"""
|
|
Return True if p is enclosed by (is inside of) self.
|
|
|
|
Notes
|
|
=====
|
|
|
|
Being on the border of self is considered False.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
p : Point
|
|
|
|
Returns
|
|
=======
|
|
|
|
encloses_point : True, False or None
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, Point
|
|
>>> p = Polygon((0, 0), (4, 0), (4, 4))
|
|
>>> p.encloses_point(Point(2, 1))
|
|
True
|
|
>>> p.encloses_point(Point(2, 2))
|
|
False
|
|
>>> p.encloses_point(Point(5, 5))
|
|
False
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
|
|
|
|
"""
|
|
p = Point(p, dim=2)
|
|
if p in self.vertices or any(p in s for s in self.sides):
|
|
return False
|
|
|
|
# move to p, checking that the result is numeric
|
|
lit = []
|
|
for v in self.vertices:
|
|
lit.append(v - p) # the difference is simplified
|
|
if lit[-1].free_symbols:
|
|
return None
|
|
|
|
poly = Polygon(*lit)
|
|
|
|
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
|
|
# the last point has to be added so all sides are computed. Using Polygon.sides is
|
|
# not good since Segments are unordered.
|
|
args = poly.args
|
|
indices = list(range(-len(args), 1))
|
|
|
|
if poly.is_convex():
|
|
orientation = None
|
|
for i in indices:
|
|
a = args[i]
|
|
b = args[i + 1]
|
|
test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
|
|
if orientation is None:
|
|
orientation = test
|
|
elif test is not orientation:
|
|
return False
|
|
return True
|
|
|
|
hit_odd = False
|
|
p1x, p1y = args[0].args
|
|
for i in indices[1:]:
|
|
p2x, p2y = args[i].args
|
|
if 0 > min(p1y, p2y):
|
|
if 0 <= max(p1y, p2y):
|
|
if 0 <= max(p1x, p2x):
|
|
if p1y != p2y:
|
|
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
|
|
if p1x == p2x or 0 <= xinters:
|
|
hit_odd = not hit_odd
|
|
p1x, p1y = p2x, p2y
|
|
return hit_odd
|
|
|
|
def arbitrary_point(self, parameter='t'):
|
|
"""A parameterized point on the polygon.
|
|
|
|
The parameter, varying from 0 to 1, assigns points to the position on
|
|
the perimeter that is that fraction of the total perimeter. So the
|
|
point evaluated at t=1/2 would return the point from the first vertex
|
|
that is 1/2 way around the polygon.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
parameter : str, optional
|
|
Default value is 't'.
|
|
|
|
Returns
|
|
=======
|
|
|
|
arbitrary_point : Point
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When `parameter` already appears in the Polygon's definition.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, Symbol
|
|
>>> t = Symbol('t', real=True)
|
|
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
|
|
>>> p = tri.arbitrary_point('t')
|
|
>>> perimeter = tri.perimeter
|
|
>>> s1, s2 = [s.length for s in tri.sides[:2]]
|
|
>>> p.subs(t, (s1 + s2/2)/perimeter)
|
|
Point2D(1, 1/2)
|
|
|
|
"""
|
|
t = _symbol(parameter, real=True)
|
|
if t.name in (f.name for f in self.free_symbols):
|
|
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
|
|
sides = []
|
|
perimeter = self.perimeter
|
|
perim_fraction_start = 0
|
|
for s in self.sides:
|
|
side_perim_fraction = s.length/perimeter
|
|
perim_fraction_end = perim_fraction_start + side_perim_fraction
|
|
pt = s.arbitrary_point(parameter).subs(
|
|
t, (t - perim_fraction_start)/side_perim_fraction)
|
|
sides.append(
|
|
(pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
|
|
perim_fraction_start = perim_fraction_end
|
|
return Piecewise(*sides)
|
|
|
|
def parameter_value(self, other, t):
|
|
if not isinstance(other,GeometryEntity):
|
|
other = Point(other, dim=self.ambient_dimension)
|
|
if not isinstance(other,Point):
|
|
raise ValueError("other must be a point")
|
|
if other.free_symbols:
|
|
raise NotImplementedError('non-numeric coordinates')
|
|
unknown = False
|
|
p = self.arbitrary_point(T)
|
|
for pt, cond in p.args:
|
|
sol = solve(pt - other, T, dict=True)
|
|
if not sol:
|
|
continue
|
|
value = sol[0][T]
|
|
if simplify(cond.subs(T, value)) == True:
|
|
return {t: value}
|
|
unknown = True
|
|
if unknown:
|
|
raise ValueError("Given point may not be on %s" % func_name(self))
|
|
raise ValueError("Given point is not on %s" % func_name(self))
|
|
|
|
def plot_interval(self, parameter='t'):
|
|
"""The plot interval for the default geometric plot of the polygon.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
parameter : str, optional
|
|
Default value is 't'.
|
|
|
|
Returns
|
|
=======
|
|
|
|
plot_interval : list (plot interval)
|
|
[parameter, lower_bound, upper_bound]
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon
|
|
>>> p = Polygon((0, 0), (1, 0), (1, 1))
|
|
>>> p.plot_interval()
|
|
[t, 0, 1]
|
|
|
|
"""
|
|
t = Symbol(parameter, real=True)
|
|
return [t, 0, 1]
|
|
|
|
def intersection(self, o):
|
|
"""The intersection of polygon and geometry entity.
|
|
|
|
The intersection may be empty and can contain individual Points and
|
|
complete Line Segments.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
other: GeometryEntity
|
|
|
|
Returns
|
|
=======
|
|
|
|
intersection : list
|
|
The list of Segments and Points
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.Segment
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon, Line
|
|
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
|
>>> poly1 = Polygon(p1, p2, p3, p4)
|
|
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
|
|
>>> poly2 = Polygon(p5, p6, p7)
|
|
>>> poly1.intersection(poly2)
|
|
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
|
|
>>> poly1.intersection(Line(p1, p2))
|
|
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
|
|
>>> poly1.intersection(p1)
|
|
[Point2D(0, 0)]
|
|
"""
|
|
intersection_result = []
|
|
k = o.sides if isinstance(o, Polygon) else [o]
|
|
for side in self.sides:
|
|
for side1 in k:
|
|
intersection_result.extend(side.intersection(side1))
|
|
|
|
intersection_result = list(uniq(intersection_result))
|
|
points = [entity for entity in intersection_result if isinstance(entity, Point)]
|
|
segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
|
|
|
|
if points and segments:
|
|
points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
|
|
if points_in_segments:
|
|
for i in points_in_segments:
|
|
points.remove(i)
|
|
return list(ordered(segments + points))
|
|
else:
|
|
return list(ordered(intersection_result))
|
|
|
|
|
|
def cut_section(self, line):
|
|
"""
|
|
Returns a tuple of two polygon segments that lie above and below
|
|
the intersecting line respectively.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
line: Line object of geometry module
|
|
line which cuts the Polygon. The part of the Polygon that lies
|
|
above and below this line is returned.
|
|
|
|
Returns
|
|
=======
|
|
|
|
upper_polygon, lower_polygon: Polygon objects or None
|
|
upper_polygon is the polygon that lies above the given line.
|
|
lower_polygon is the polygon that lies below the given line.
|
|
upper_polygon and lower polygon are ``None`` when no polygon
|
|
exists above the line or below the line.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError: When the line does not intersect the polygon
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, Line
|
|
>>> a, b = 20, 10
|
|
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
|
>>> rectangle = Polygon(p1, p2, p3, p4)
|
|
>>> t = rectangle.cut_section(Line((0, 5), slope=0))
|
|
>>> t
|
|
(Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)),
|
|
Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
|
|
>>> upper_segment, lower_segment = t
|
|
>>> upper_segment.area
|
|
100
|
|
>>> upper_segment.centroid
|
|
Point2D(10, 15/2)
|
|
>>> lower_segment.centroid
|
|
Point2D(10, 5/2)
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry
|
|
|
|
"""
|
|
intersection_points = self.intersection(line)
|
|
if not intersection_points:
|
|
raise ValueError("This line does not intersect the polygon")
|
|
|
|
points = list(self.vertices)
|
|
points.append(points[0])
|
|
|
|
eq = line.equation(x, y)
|
|
|
|
# considering equation of line to be `ax +by + c`
|
|
a = eq.coeff(x)
|
|
b = eq.coeff(y)
|
|
|
|
upper_vertices = []
|
|
lower_vertices = []
|
|
# prev is true when previous point is above the line
|
|
prev = True
|
|
prev_point = None
|
|
for point in points:
|
|
# when coefficient of y is 0, right side of the line is
|
|
# considered
|
|
compare = eq.subs({x: point.x, y: point.y})/b if b \
|
|
else eq.subs(x, point.x)/a
|
|
|
|
# if point lies above line
|
|
if compare > 0:
|
|
if not prev:
|
|
# if previous point lies below the line, the intersection
|
|
# point of the polygon edge and the line has to be included
|
|
edge = Line(point, prev_point)
|
|
new_point = edge.intersection(line)
|
|
upper_vertices.append(new_point[0])
|
|
lower_vertices.append(new_point[0])
|
|
|
|
upper_vertices.append(point)
|
|
prev = True
|
|
else:
|
|
if prev and prev_point:
|
|
edge = Line(point, prev_point)
|
|
new_point = edge.intersection(line)
|
|
upper_vertices.append(new_point[0])
|
|
lower_vertices.append(new_point[0])
|
|
lower_vertices.append(point)
|
|
prev = False
|
|
prev_point = point
|
|
|
|
upper_polygon, lower_polygon = None, None
|
|
if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon):
|
|
upper_polygon = Polygon(*upper_vertices)
|
|
if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon):
|
|
lower_polygon = Polygon(*lower_vertices)
|
|
|
|
return upper_polygon, lower_polygon
|
|
|
|
|
|
def distance(self, o):
|
|
"""
|
|
Returns the shortest distance between self and o.
|
|
|
|
If o is a point, then self does not need to be convex.
|
|
If o is another polygon self and o must be convex.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon, RegularPolygon
|
|
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
|
|
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
|
|
>>> poly.distance(p2)
|
|
sqrt(61)
|
|
"""
|
|
if isinstance(o, Point):
|
|
dist = oo
|
|
for side in self.sides:
|
|
current = side.distance(o)
|
|
if current == 0:
|
|
return S.Zero
|
|
elif current < dist:
|
|
dist = current
|
|
return dist
|
|
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
|
|
return self._do_poly_distance(o)
|
|
raise NotImplementedError()
|
|
|
|
def _do_poly_distance(self, e2):
|
|
"""
|
|
Calculates the least distance between the exteriors of two
|
|
convex polygons e1 and e2. Does not check for the convexity
|
|
of the polygons as this is checked by Polygon.distance.
|
|
|
|
Notes
|
|
=====
|
|
|
|
- Prints a warning if the two polygons possibly intersect as the return
|
|
value will not be valid in such a case. For a more through test of
|
|
intersection use intersection().
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point.distance
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Polygon
|
|
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
|
|
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
|
|
>>> square._do_poly_distance(triangle)
|
|
sqrt(2)/2
|
|
|
|
Description of method used
|
|
==========================
|
|
|
|
Method:
|
|
[1] https://web.archive.org/web/20150509035744/http://cgm.cs.mcgill.ca/~orm/mind2p.html
|
|
Uses rotating calipers:
|
|
[2] https://en.wikipedia.org/wiki/Rotating_calipers
|
|
and antipodal points:
|
|
[3] https://en.wikipedia.org/wiki/Antipodal_point
|
|
"""
|
|
e1 = self
|
|
|
|
'''Tests for a possible intersection between the polygons and outputs a warning'''
|
|
e1_center = e1.centroid
|
|
e2_center = e2.centroid
|
|
e1_max_radius = S.Zero
|
|
e2_max_radius = S.Zero
|
|
for vertex in e1.vertices:
|
|
r = Point.distance(e1_center, vertex)
|
|
if e1_max_radius < r:
|
|
e1_max_radius = r
|
|
for vertex in e2.vertices:
|
|
r = Point.distance(e2_center, vertex)
|
|
if e2_max_radius < r:
|
|
e2_max_radius = r
|
|
center_dist = Point.distance(e1_center, e2_center)
|
|
if center_dist <= e1_max_radius + e2_max_radius:
|
|
warnings.warn("Polygons may intersect producing erroneous output",
|
|
stacklevel=3)
|
|
|
|
'''
|
|
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
|
|
'''
|
|
e1_ymax = Point(0, -oo)
|
|
e2_ymin = Point(0, oo)
|
|
|
|
for vertex in e1.vertices:
|
|
if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
|
|
e1_ymax = vertex
|
|
for vertex in e2.vertices:
|
|
if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
|
|
e2_ymin = vertex
|
|
min_dist = Point.distance(e1_ymax, e2_ymin)
|
|
|
|
'''
|
|
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
|
|
to which the vertex is connected as its value. The same is then done for e2.
|
|
'''
|
|
e1_connections = {}
|
|
e2_connections = {}
|
|
|
|
for side in e1.sides:
|
|
if side.p1 in e1_connections:
|
|
e1_connections[side.p1].append(side.p2)
|
|
else:
|
|
e1_connections[side.p1] = [side.p2]
|
|
|
|
if side.p2 in e1_connections:
|
|
e1_connections[side.p2].append(side.p1)
|
|
else:
|
|
e1_connections[side.p2] = [side.p1]
|
|
|
|
for side in e2.sides:
|
|
if side.p1 in e2_connections:
|
|
e2_connections[side.p1].append(side.p2)
|
|
else:
|
|
e2_connections[side.p1] = [side.p2]
|
|
|
|
if side.p2 in e2_connections:
|
|
e2_connections[side.p2].append(side.p1)
|
|
else:
|
|
e2_connections[side.p2] = [side.p1]
|
|
|
|
e1_current = e1_ymax
|
|
e2_current = e2_ymin
|
|
support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
|
|
|
|
'''
|
|
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
|
|
this information combined with the above produced dictionaries determines the
|
|
path that will be taken around the polygons
|
|
'''
|
|
point1 = e1_connections[e1_ymax][0]
|
|
point2 = e1_connections[e1_ymax][1]
|
|
angle1 = support_line.angle_between(Line(e1_ymax, point1))
|
|
angle2 = support_line.angle_between(Line(e1_ymax, point2))
|
|
if angle1 < angle2:
|
|
e1_next = point1
|
|
elif angle2 < angle1:
|
|
e1_next = point2
|
|
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
|
|
e1_next = point2
|
|
else:
|
|
e1_next = point1
|
|
|
|
point1 = e2_connections[e2_ymin][0]
|
|
point2 = e2_connections[e2_ymin][1]
|
|
angle1 = support_line.angle_between(Line(e2_ymin, point1))
|
|
angle2 = support_line.angle_between(Line(e2_ymin, point2))
|
|
if angle1 > angle2:
|
|
e2_next = point1
|
|
elif angle2 > angle1:
|
|
e2_next = point2
|
|
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
|
|
e2_next = point2
|
|
else:
|
|
e2_next = point1
|
|
|
|
'''
|
|
Loop which determines the distance between anti-podal pairs and updates the
|
|
minimum distance accordingly. It repeats until it reaches the starting position.
|
|
'''
|
|
while True:
|
|
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
|
|
e2_angle = pi - support_line.angle_between(Line(
|
|
e2_current, e2_next))
|
|
|
|
if (e1_angle < e2_angle) is True:
|
|
support_line = Line(e1_current, e1_next)
|
|
e1_segment = Segment(e1_current, e1_next)
|
|
min_dist_current = e1_segment.distance(e2_current)
|
|
|
|
if min_dist_current.evalf() < min_dist.evalf():
|
|
min_dist = min_dist_current
|
|
|
|
if e1_connections[e1_next][0] != e1_current:
|
|
e1_current = e1_next
|
|
e1_next = e1_connections[e1_next][0]
|
|
else:
|
|
e1_current = e1_next
|
|
e1_next = e1_connections[e1_next][1]
|
|
elif (e1_angle > e2_angle) is True:
|
|
support_line = Line(e2_next, e2_current)
|
|
e2_segment = Segment(e2_current, e2_next)
|
|
min_dist_current = e2_segment.distance(e1_current)
|
|
|
|
if min_dist_current.evalf() < min_dist.evalf():
|
|
min_dist = min_dist_current
|
|
|
|
if e2_connections[e2_next][0] != e2_current:
|
|
e2_current = e2_next
|
|
e2_next = e2_connections[e2_next][0]
|
|
else:
|
|
e2_current = e2_next
|
|
e2_next = e2_connections[e2_next][1]
|
|
else:
|
|
support_line = Line(e1_current, e1_next)
|
|
e1_segment = Segment(e1_current, e1_next)
|
|
e2_segment = Segment(e2_current, e2_next)
|
|
min1 = e1_segment.distance(e2_next)
|
|
min2 = e2_segment.distance(e1_next)
|
|
|
|
min_dist_current = min(min1, min2)
|
|
if min_dist_current.evalf() < min_dist.evalf():
|
|
min_dist = min_dist_current
|
|
|
|
if e1_connections[e1_next][0] != e1_current:
|
|
e1_current = e1_next
|
|
e1_next = e1_connections[e1_next][0]
|
|
else:
|
|
e1_current = e1_next
|
|
e1_next = e1_connections[e1_next][1]
|
|
|
|
if e2_connections[e2_next][0] != e2_current:
|
|
e2_current = e2_next
|
|
e2_next = e2_connections[e2_next][0]
|
|
else:
|
|
e2_current = e2_next
|
|
e2_next = e2_connections[e2_next][1]
|
|
if e1_current == e1_ymax and e2_current == e2_ymin:
|
|
break
|
|
return min_dist
|
|
|
|
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
|
"""Returns SVG path element for the Polygon.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
scale_factor : float
|
|
Multiplication factor for the SVG stroke-width. Default is 1.
|
|
fill_color : str, optional
|
|
Hex string for fill color. Default is "#66cc99".
|
|
"""
|
|
verts = map(N, self.vertices)
|
|
coords = ["{},{}".format(p.x, p.y) for p in verts]
|
|
path = "M {} L {} z".format(coords[0], " L ".join(coords[1:]))
|
|
return (
|
|
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
|
|
'stroke-width="{0}" opacity="0.6" d="{1}" />'
|
|
).format(2. * scale_factor, path, fill_color)
|
|
|
|
def _hashable_content(self):
|
|
|
|
D = {}
|
|
def ref_list(point_list):
|
|
kee = {}
|
|
for i, p in enumerate(ordered(set(point_list))):
|
|
kee[p] = i
|
|
D[i] = p
|
|
return [kee[p] for p in point_list]
|
|
|
|
S1 = ref_list(self.args)
|
|
r_nor = rotate_left(S1, least_rotation(S1))
|
|
S2 = ref_list(list(reversed(self.args)))
|
|
r_rev = rotate_left(S2, least_rotation(S2))
|
|
if r_nor < r_rev:
|
|
r = r_nor
|
|
else:
|
|
r = r_rev
|
|
canonical_args = [ D[order] for order in r ]
|
|
return tuple(canonical_args)
|
|
|
|
def __contains__(self, o):
|
|
"""
|
|
Return True if o is contained within the boundary lines of self.altitudes
|
|
|
|
Parameters
|
|
==========
|
|
|
|
other : GeometryEntity
|
|
|
|
Returns
|
|
=======
|
|
|
|
contained in : bool
|
|
The points (and sides, if applicable) are contained in self.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.entity.GeometryEntity.encloses
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Line, Segment, Point
|
|
>>> p = Point(0, 0)
|
|
>>> q = Point(1, 1)
|
|
>>> s = Segment(p, q*2)
|
|
>>> l = Line(p, q)
|
|
>>> p in q
|
|
False
|
|
>>> p in s
|
|
True
|
|
>>> q*3 in s
|
|
False
|
|
>>> s in l
|
|
True
|
|
|
|
"""
|
|
|
|
if isinstance(o, Polygon):
|
|
return self == o
|
|
elif isinstance(o, Segment):
|
|
return any(o in s for s in self.sides)
|
|
elif isinstance(o, Point):
|
|
if o in self.vertices:
|
|
return True
|
|
for side in self.sides:
|
|
if o in side:
|
|
return True
|
|
|
|
return False
|
|
|
|
def bisectors(p, prec=None):
|
|
"""Returns angle bisectors of a polygon. If prec is given
|
|
then approximate the point defining the ray to that precision.
|
|
|
|
The distance between the points defining the bisector ray is 1.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Polygon, Point
|
|
>>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
|
|
>>> p.bisectors(2)
|
|
{Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)),
|
|
Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)),
|
|
Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)),
|
|
Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))}
|
|
"""
|
|
b = {}
|
|
pts = list(p.args)
|
|
pts.append(pts[0]) # close it
|
|
cw = Polygon._isright(*pts[:3])
|
|
if cw:
|
|
pts = list(reversed(pts))
|
|
for v, a in p.angles.items():
|
|
i = pts.index(v)
|
|
p1, p2 = Point._normalize_dimension(pts[i], pts[i + 1])
|
|
ray = Ray(p1, p2).rotate(a/2, v)
|
|
dir = ray.direction
|
|
ray = Ray(ray.p1, ray.p1 + dir/dir.distance((0, 0)))
|
|
if prec is not None:
|
|
ray = Ray(ray.p1, ray.p2.n(prec))
|
|
b[v] = ray
|
|
return b
|
|
|
|
|
|
class RegularPolygon(Polygon):
|
|
"""
|
|
A regular polygon.
|
|
|
|
Such a polygon has all internal angles equal and all sides the same length.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
center : Point
|
|
radius : number or Basic instance
|
|
The distance from the center to a vertex
|
|
n : int
|
|
The number of sides
|
|
|
|
Attributes
|
|
==========
|
|
|
|
vertices
|
|
center
|
|
radius
|
|
rotation
|
|
apothem
|
|
interior_angle
|
|
exterior_angle
|
|
circumcircle
|
|
incircle
|
|
angles
|
|
|
|
Raises
|
|
======
|
|
|
|
GeometryError
|
|
If the `center` is not a Point, or the `radius` is not a number or Basic
|
|
instance, or the number of sides, `n`, is less than three.
|
|
|
|
Notes
|
|
=====
|
|
|
|
A RegularPolygon can be instantiated with Polygon with the kwarg n.
|
|
|
|
Regular polygons are instantiated with a center, radius, number of sides
|
|
and a rotation angle. Whereas the arguments of a Polygon are vertices, the
|
|
vertices of the RegularPolygon must be obtained with the vertices method.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, Polygon
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> r = RegularPolygon(Point(0, 0), 5, 3)
|
|
>>> r
|
|
RegularPolygon(Point2D(0, 0), 5, 3, 0)
|
|
>>> r.vertices[0]
|
|
Point2D(5, 0)
|
|
|
|
"""
|
|
|
|
__slots__ = ('_n', '_center', '_radius', '_rot')
|
|
|
|
def __new__(self, c, r, n, rot=0, **kwargs):
|
|
r, n, rot = map(sympify, (r, n, rot))
|
|
c = Point(c, dim=2, **kwargs)
|
|
if not isinstance(r, Expr):
|
|
raise GeometryError("r must be an Expr object, not %s" % r)
|
|
if n.is_Number:
|
|
as_int(n) # let an error raise if necessary
|
|
if n < 3:
|
|
raise GeometryError("n must be a >= 3, not %s" % n)
|
|
|
|
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
|
|
obj._n = n
|
|
obj._center = c
|
|
obj._radius = r
|
|
obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
|
|
return obj
|
|
|
|
def _eval_evalf(self, prec=15, **options):
|
|
c, r, n, a = self.args
|
|
dps = prec_to_dps(prec)
|
|
c, r, a = [i.evalf(n=dps, **options) for i in (c, r, a)]
|
|
return self.func(c, r, n, a)
|
|
|
|
@property
|
|
def args(self):
|
|
"""
|
|
Returns the center point, the radius,
|
|
the number of sides, and the orientation angle.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> r = RegularPolygon(Point(0, 0), 5, 3)
|
|
>>> r.args
|
|
(Point2D(0, 0), 5, 3, 0)
|
|
"""
|
|
return self._center, self._radius, self._n, self._rot
|
|
|
|
def __str__(self):
|
|
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
|
|
|
|
def __repr__(self):
|
|
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
|
|
|
|
@property
|
|
def area(self):
|
|
"""Returns the area.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon
|
|
>>> square = RegularPolygon((0, 0), 1, 4)
|
|
>>> square.area
|
|
2
|
|
>>> _ == square.length**2
|
|
True
|
|
"""
|
|
c, r, n, rot = self.args
|
|
return sign(r)*n*self.length**2/(4*tan(pi/n))
|
|
|
|
@property
|
|
def length(self):
|
|
"""Returns the length of the sides.
|
|
|
|
The half-length of the side and the apothem form two legs
|
|
of a right triangle whose hypotenuse is the radius of the
|
|
regular polygon.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon
|
|
>>> from sympy import sqrt
|
|
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
|
|
>>> s.length
|
|
sqrt(2)
|
|
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
|
|
True
|
|
|
|
"""
|
|
return self.radius*2*sin(pi/self._n)
|
|
|
|
@property
|
|
def center(self):
|
|
"""The center of the RegularPolygon
|
|
|
|
This is also the center of the circumscribing circle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
center : Point
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
|
|
>>> rp.center
|
|
Point2D(0, 0)
|
|
"""
|
|
return self._center
|
|
|
|
centroid = center
|
|
|
|
@property
|
|
def circumcenter(self):
|
|
"""
|
|
Alias for center.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
|
|
>>> rp.circumcenter
|
|
Point2D(0, 0)
|
|
"""
|
|
return self.center
|
|
|
|
@property
|
|
def radius(self):
|
|
"""Radius of the RegularPolygon
|
|
|
|
This is also the radius of the circumscribing circle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
radius : number or instance of Basic
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> radius = Symbol('r')
|
|
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
|
>>> rp.radius
|
|
r
|
|
|
|
"""
|
|
return self._radius
|
|
|
|
@property
|
|
def circumradius(self):
|
|
"""
|
|
Alias for radius.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> radius = Symbol('r')
|
|
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
|
>>> rp.circumradius
|
|
r
|
|
"""
|
|
return self.radius
|
|
|
|
@property
|
|
def rotation(self):
|
|
"""CCW angle by which the RegularPolygon is rotated
|
|
|
|
Returns
|
|
=======
|
|
|
|
rotation : number or instance of Basic
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import pi
|
|
>>> from sympy.abc import a
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
|
|
pi/4
|
|
|
|
Numerical rotation angles are made canonical:
|
|
|
|
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
|
|
a
|
|
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
|
|
0
|
|
|
|
"""
|
|
return self._rot
|
|
|
|
@property
|
|
def apothem(self):
|
|
"""The inradius of the RegularPolygon.
|
|
|
|
The apothem/inradius is the radius of the inscribed circle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
apothem : number or instance of Basic
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> radius = Symbol('r')
|
|
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
|
>>> rp.apothem
|
|
sqrt(2)*r/2
|
|
|
|
"""
|
|
return self.radius * cos(S.Pi/self._n)
|
|
|
|
@property
|
|
def inradius(self):
|
|
"""
|
|
Alias for apothem.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> radius = Symbol('r')
|
|
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
|
|
>>> rp.inradius
|
|
sqrt(2)*r/2
|
|
"""
|
|
return self.apothem
|
|
|
|
@property
|
|
def interior_angle(self):
|
|
"""Measure of the interior angles.
|
|
|
|
Returns
|
|
=======
|
|
|
|
interior_angle : number
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.LinearEntity.angle_between
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
|
|
>>> rp.interior_angle
|
|
3*pi/4
|
|
|
|
"""
|
|
return (self._n - 2)*S.Pi/self._n
|
|
|
|
@property
|
|
def exterior_angle(self):
|
|
"""Measure of the exterior angles.
|
|
|
|
Returns
|
|
=======
|
|
|
|
exterior_angle : number
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.LinearEntity.angle_between
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
|
|
>>> rp.exterior_angle
|
|
pi/4
|
|
|
|
"""
|
|
return 2*S.Pi/self._n
|
|
|
|
@property
|
|
def circumcircle(self):
|
|
"""The circumcircle of the RegularPolygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
circumcircle : Circle
|
|
|
|
See Also
|
|
========
|
|
|
|
circumcenter, sympy.geometry.ellipse.Circle
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
|
|
>>> rp.circumcircle
|
|
Circle(Point2D(0, 0), 4)
|
|
|
|
"""
|
|
return Circle(self.center, self.radius)
|
|
|
|
@property
|
|
def incircle(self):
|
|
"""The incircle of the RegularPolygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
incircle : Circle
|
|
|
|
See Also
|
|
========
|
|
|
|
inradius, sympy.geometry.ellipse.Circle
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
|
|
>>> rp.incircle
|
|
Circle(Point2D(0, 0), 4*cos(pi/7))
|
|
|
|
"""
|
|
return Circle(self.center, self.apothem)
|
|
|
|
@property
|
|
def angles(self):
|
|
"""
|
|
Returns a dictionary with keys, the vertices of the Polygon,
|
|
and values, the interior angle at each vertex.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> r = RegularPolygon(Point(0, 0), 5, 3)
|
|
>>> r.angles
|
|
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
|
|
Point2D(-5/2, 5*sqrt(3)/2): pi/3,
|
|
Point2D(5, 0): pi/3}
|
|
"""
|
|
ret = {}
|
|
ang = self.interior_angle
|
|
for v in self.vertices:
|
|
ret[v] = ang
|
|
return ret
|
|
|
|
def encloses_point(self, p):
|
|
"""
|
|
Return True if p is enclosed by (is inside of) self.
|
|
|
|
Notes
|
|
=====
|
|
|
|
Being on the border of self is considered False.
|
|
|
|
The general Polygon.encloses_point method is called only if
|
|
a point is not within or beyond the incircle or circumcircle,
|
|
respectively.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
p : Point
|
|
|
|
Returns
|
|
=======
|
|
|
|
encloses_point : True, False or None
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.ellipse.Ellipse.encloses_point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, S, Point, Symbol
|
|
>>> p = RegularPolygon((0, 0), 3, 4)
|
|
>>> p.encloses_point(Point(0, 0))
|
|
True
|
|
>>> r, R = p.inradius, p.circumradius
|
|
>>> p.encloses_point(Point((r + R)/2, 0))
|
|
True
|
|
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
|
|
False
|
|
>>> t = Symbol('t', real=True)
|
|
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
|
|
False
|
|
>>> p.encloses_point(Point(5, 5))
|
|
False
|
|
|
|
"""
|
|
|
|
c = self.center
|
|
d = Segment(c, p).length
|
|
if d >= self.radius:
|
|
return False
|
|
elif d < self.inradius:
|
|
return True
|
|
else:
|
|
# now enumerate the RegularPolygon like a general polygon.
|
|
return Polygon.encloses_point(self, p)
|
|
|
|
def spin(self, angle):
|
|
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
|
|
|
|
See also: rotate method which moves the center.
|
|
|
|
>>> from sympy import Polygon, Point, pi
|
|
>>> r = Polygon(Point(0,0), 1, n=3)
|
|
>>> r.vertices[0]
|
|
Point2D(1, 0)
|
|
>>> r.spin(pi/6)
|
|
>>> r.vertices[0]
|
|
Point2D(sqrt(3)/2, 1/2)
|
|
|
|
See Also
|
|
========
|
|
|
|
rotation
|
|
rotate : Creates a copy of the RegularPolygon rotated about a Point
|
|
|
|
"""
|
|
self._rot += angle
|
|
|
|
def rotate(self, angle, pt=None):
|
|
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
|
|
about its center.
|
|
|
|
>>> from sympy import Point, RegularPolygon, pi
|
|
>>> t = RegularPolygon(Point(1, 0), 1, 3)
|
|
>>> t.vertices[0] # vertex on x-axis
|
|
Point2D(2, 0)
|
|
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
|
|
Point2D(0, 2)
|
|
|
|
See Also
|
|
========
|
|
|
|
rotation
|
|
spin : Rotates a RegularPolygon in place
|
|
|
|
"""
|
|
|
|
r = type(self)(*self.args) # need a copy or else changes are in-place
|
|
r._rot += angle
|
|
return GeometryEntity.rotate(r, angle, pt)
|
|
|
|
def scale(self, x=1, y=1, pt=None):
|
|
"""Override GeometryEntity.scale since it is the radius that must be
|
|
scaled (if x == y) or else a new Polygon must be returned.
|
|
|
|
>>> from sympy import RegularPolygon
|
|
|
|
Symmetric scaling returns a RegularPolygon:
|
|
|
|
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
|
|
RegularPolygon(Point2D(0, 0), 2, 4, 0)
|
|
|
|
Asymmetric scaling returns a kite as a Polygon:
|
|
|
|
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
|
|
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
|
|
|
|
"""
|
|
if pt:
|
|
pt = Point(pt, dim=2)
|
|
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
|
if x != y:
|
|
return Polygon(*self.vertices).scale(x, y)
|
|
c, r, n, rot = self.args
|
|
r *= x
|
|
return self.func(c, r, n, rot)
|
|
|
|
def reflect(self, line):
|
|
"""Override GeometryEntity.reflect since this is not made of only
|
|
points.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Line
|
|
|
|
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
|
|
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
|
|
|
|
"""
|
|
c, r, n, rot = self.args
|
|
v = self.vertices[0]
|
|
d = v - c
|
|
cc = c.reflect(line)
|
|
vv = v.reflect(line)
|
|
dd = vv - cc
|
|
# calculate rotation about the new center
|
|
# which will align the vertices
|
|
l1 = Ray((0, 0), dd)
|
|
l2 = Ray((0, 0), d)
|
|
ang = l1.closing_angle(l2)
|
|
rot += ang
|
|
# change sign of radius as point traversal is reversed
|
|
return self.func(cc, -r, n, rot)
|
|
|
|
@property
|
|
def vertices(self):
|
|
"""The vertices of the RegularPolygon.
|
|
|
|
Returns
|
|
=======
|
|
|
|
vertices : list
|
|
Each vertex is a Point.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import RegularPolygon, Point
|
|
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
|
|
>>> rp.vertices
|
|
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
|
|
|
|
"""
|
|
c = self._center
|
|
r = abs(self._radius)
|
|
rot = self._rot
|
|
v = 2*S.Pi/self._n
|
|
|
|
return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
|
|
for k in range(self._n)]
|
|
|
|
def __eq__(self, o):
|
|
if not isinstance(o, Polygon):
|
|
return False
|
|
elif not isinstance(o, RegularPolygon):
|
|
return Polygon.__eq__(o, self)
|
|
return self.args == o.args
|
|
|
|
def __hash__(self):
|
|
return super().__hash__()
|
|
|
|
|
|
class Triangle(Polygon):
|
|
"""
|
|
A polygon with three vertices and three sides.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
points : sequence of Points
|
|
keyword: asa, sas, or sss to specify sides/angles of the triangle
|
|
|
|
Attributes
|
|
==========
|
|
|
|
vertices
|
|
altitudes
|
|
orthocenter
|
|
circumcenter
|
|
circumradius
|
|
circumcircle
|
|
inradius
|
|
incircle
|
|
exradii
|
|
medians
|
|
medial
|
|
nine_point_circle
|
|
|
|
Raises
|
|
======
|
|
|
|
GeometryError
|
|
If the number of vertices is not equal to three, or one of the vertices
|
|
is not a Point, or a valid keyword is not given.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, Polygon
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
|
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
|
|
|
|
Keywords sss, sas, or asa can be used to give the desired
|
|
side lengths (in order) and interior angles (in degrees) that
|
|
define the triangle:
|
|
|
|
>>> Triangle(sss=(3, 4, 5))
|
|
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
|
|
>>> Triangle(asa=(30, 1, 30))
|
|
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
|
|
>>> Triangle(sas=(1, 45, 2))
|
|
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
|
|
|
|
"""
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
if len(args) != 3:
|
|
if 'sss' in kwargs:
|
|
return _sss(*[simplify(a) for a in kwargs['sss']])
|
|
if 'asa' in kwargs:
|
|
return _asa(*[simplify(a) for a in kwargs['asa']])
|
|
if 'sas' in kwargs:
|
|
return _sas(*[simplify(a) for a in kwargs['sas']])
|
|
msg = "Triangle instantiates with three points or a valid keyword."
|
|
raise GeometryError(msg)
|
|
|
|
vertices = [Point(a, dim=2, **kwargs) for a in args]
|
|
|
|
# remove consecutive duplicates
|
|
nodup = []
|
|
for p in vertices:
|
|
if nodup and p == nodup[-1]:
|
|
continue
|
|
nodup.append(p)
|
|
if len(nodup) > 1 and nodup[-1] == nodup[0]:
|
|
nodup.pop() # last point was same as first
|
|
|
|
# remove collinear points
|
|
i = -3
|
|
while i < len(nodup) - 3 and len(nodup) > 2:
|
|
a, b, c = sorted(
|
|
[nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
|
|
if Point.is_collinear(a, b, c):
|
|
nodup[i] = a
|
|
nodup[i + 1] = None
|
|
nodup.pop(i + 1)
|
|
i += 1
|
|
|
|
vertices = list(filter(lambda x: x is not None, nodup))
|
|
|
|
if len(vertices) == 3:
|
|
return GeometryEntity.__new__(cls, *vertices, **kwargs)
|
|
elif len(vertices) == 2:
|
|
return Segment(*vertices, **kwargs)
|
|
else:
|
|
return Point(*vertices, **kwargs)
|
|
|
|
@property
|
|
def vertices(self):
|
|
"""The triangle's vertices
|
|
|
|
Returns
|
|
=======
|
|
|
|
vertices : tuple
|
|
Each element in the tuple is a Point
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
|
>>> t.vertices
|
|
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
|
|
|
|
"""
|
|
return self.args
|
|
|
|
def is_similar(t1, t2):
|
|
"""Is another triangle similar to this one.
|
|
|
|
Two triangles are similar if one can be uniformly scaled to the other.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
other: Triangle
|
|
|
|
Returns
|
|
=======
|
|
|
|
is_similar : boolean
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.entity.GeometryEntity.is_similar
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
|
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
|
|
>>> t1.is_similar(t2)
|
|
True
|
|
|
|
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
|
|
>>> t1.is_similar(t2)
|
|
False
|
|
|
|
"""
|
|
if not isinstance(t2, Polygon):
|
|
return False
|
|
|
|
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
|
|
s2 = [side.length for side in t2.sides]
|
|
|
|
def _are_similar(u1, u2, u3, v1, v2, v3):
|
|
e1 = simplify(u1/v1)
|
|
e2 = simplify(u2/v2)
|
|
e3 = simplify(u3/v3)
|
|
return bool(e1 == e2) and bool(e2 == e3)
|
|
|
|
# There's only 6 permutations, so write them out
|
|
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
|
|
_are_similar(s1_1, s1_3, s1_2, *s2) or \
|
|
_are_similar(s1_2, s1_1, s1_3, *s2) or \
|
|
_are_similar(s1_2, s1_3, s1_1, *s2) or \
|
|
_are_similar(s1_3, s1_1, s1_2, *s2) or \
|
|
_are_similar(s1_3, s1_2, s1_1, *s2)
|
|
|
|
def is_equilateral(self):
|
|
"""Are all the sides the same length?
|
|
|
|
Returns
|
|
=======
|
|
|
|
is_equilateral : boolean
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
|
|
is_isosceles, is_right, is_scalene
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
|
>>> t1.is_equilateral()
|
|
False
|
|
|
|
>>> from sympy import sqrt
|
|
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
|
|
>>> t2.is_equilateral()
|
|
True
|
|
|
|
"""
|
|
return not has_variety(s.length for s in self.sides)
|
|
|
|
def is_isosceles(self):
|
|
"""Are two or more of the sides the same length?
|
|
|
|
Returns
|
|
=======
|
|
|
|
is_isosceles : boolean
|
|
|
|
See Also
|
|
========
|
|
|
|
is_equilateral, is_right, is_scalene
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
|
|
>>> t1.is_isosceles()
|
|
True
|
|
|
|
"""
|
|
return has_dups(s.length for s in self.sides)
|
|
|
|
def is_scalene(self):
|
|
"""Are all the sides of the triangle of different lengths?
|
|
|
|
Returns
|
|
=======
|
|
|
|
is_scalene : boolean
|
|
|
|
See Also
|
|
========
|
|
|
|
is_equilateral, is_isosceles, is_right
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
|
|
>>> t1.is_scalene()
|
|
True
|
|
|
|
"""
|
|
return not has_dups(s.length for s in self.sides)
|
|
|
|
def is_right(self):
|
|
"""Is the triangle right-angled.
|
|
|
|
Returns
|
|
=======
|
|
|
|
is_right : boolean
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.LinearEntity.is_perpendicular
|
|
is_equilateral, is_isosceles, is_scalene
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Triangle, Point
|
|
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
|
|
>>> t1.is_right()
|
|
True
|
|
|
|
"""
|
|
s = self.sides
|
|
return Segment.is_perpendicular(s[0], s[1]) or \
|
|
Segment.is_perpendicular(s[1], s[2]) or \
|
|
Segment.is_perpendicular(s[0], s[2])
|
|
|
|
@property
|
|
def altitudes(self):
|
|
"""The altitudes of the triangle.
|
|
|
|
An altitude of a triangle is a segment through a vertex,
|
|
perpendicular to the opposite side, with length being the
|
|
height of the vertex measured from the line containing the side.
|
|
|
|
Returns
|
|
=======
|
|
|
|
altitudes : dict
|
|
The dictionary consists of keys which are vertices and values
|
|
which are Segments.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.Segment.length
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.altitudes[p1]
|
|
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
|
|
|
|
"""
|
|
s = self.sides
|
|
v = self.vertices
|
|
return {v[0]: s[1].perpendicular_segment(v[0]),
|
|
v[1]: s[2].perpendicular_segment(v[1]),
|
|
v[2]: s[0].perpendicular_segment(v[2])}
|
|
|
|
@property
|
|
def orthocenter(self):
|
|
"""The orthocenter of the triangle.
|
|
|
|
The orthocenter is the intersection of the altitudes of a triangle.
|
|
It may lie inside, outside or on the triangle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
orthocenter : Point
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.orthocenter
|
|
Point2D(0, 0)
|
|
|
|
"""
|
|
a = self.altitudes
|
|
v = self.vertices
|
|
return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
|
|
|
|
@property
|
|
def circumcenter(self):
|
|
"""The circumcenter of the triangle
|
|
|
|
The circumcenter is the center of the circumcircle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
circumcenter : Point
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.circumcenter
|
|
Point2D(1/2, 1/2)
|
|
"""
|
|
a, b, c = [x.perpendicular_bisector() for x in self.sides]
|
|
return a.intersection(b)[0]
|
|
|
|
@property
|
|
def circumradius(self):
|
|
"""The radius of the circumcircle of the triangle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
circumradius : number of Basic instance
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.ellipse.Circle.radius
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol
|
|
>>> from sympy import Point, Triangle
|
|
>>> a = Symbol('a')
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.circumradius
|
|
sqrt(a**2/4 + 1/4)
|
|
"""
|
|
return Point.distance(self.circumcenter, self.vertices[0])
|
|
|
|
@property
|
|
def circumcircle(self):
|
|
"""The circle which passes through the three vertices of the triangle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
circumcircle : Circle
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.ellipse.Circle
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.circumcircle
|
|
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
|
|
|
|
"""
|
|
return Circle(self.circumcenter, self.circumradius)
|
|
|
|
def bisectors(self):
|
|
"""The angle bisectors of the triangle.
|
|
|
|
An angle bisector of a triangle is a straight line through a vertex
|
|
which cuts the corresponding angle in half.
|
|
|
|
Returns
|
|
=======
|
|
|
|
bisectors : dict
|
|
Each key is a vertex (Point) and each value is the corresponding
|
|
bisector (Segment).
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point, sympy.geometry.line.Segment
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle, Segment
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> from sympy import sqrt
|
|
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
|
|
True
|
|
|
|
"""
|
|
# use lines containing sides so containment check during
|
|
# intersection calculation can be avoided, thus reducing
|
|
# the processing time for calculating the bisectors
|
|
s = [Line(l) for l in self.sides]
|
|
v = self.vertices
|
|
c = self.incenter
|
|
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
|
|
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
|
|
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
|
|
return {v[0]: l1, v[1]: l2, v[2]: l3}
|
|
|
|
@property
|
|
def incenter(self):
|
|
"""The center of the incircle.
|
|
|
|
The incircle is the circle which lies inside the triangle and touches
|
|
all three sides.
|
|
|
|
Returns
|
|
=======
|
|
|
|
incenter : Point
|
|
|
|
See Also
|
|
========
|
|
|
|
incircle, sympy.geometry.point.Point
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.incenter
|
|
Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
|
|
|
|
"""
|
|
s = self.sides
|
|
l = Matrix([s[i].length for i in [1, 2, 0]])
|
|
p = sum(l)
|
|
v = self.vertices
|
|
x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
|
|
y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
|
|
return Point(x, y)
|
|
|
|
@property
|
|
def inradius(self):
|
|
"""The radius of the incircle.
|
|
|
|
Returns
|
|
=======
|
|
|
|
inradius : number of Basic instance
|
|
|
|
See Also
|
|
========
|
|
|
|
incircle, sympy.geometry.ellipse.Circle.radius
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.inradius
|
|
1
|
|
|
|
"""
|
|
return simplify(2 * self.area / self.perimeter)
|
|
|
|
@property
|
|
def incircle(self):
|
|
"""The incircle of the triangle.
|
|
|
|
The incircle is the circle which lies inside the triangle and touches
|
|
all three sides.
|
|
|
|
Returns
|
|
=======
|
|
|
|
incircle : Circle
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.ellipse.Circle
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.incircle
|
|
Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
|
|
|
|
"""
|
|
return Circle(self.incenter, self.inradius)
|
|
|
|
@property
|
|
def exradii(self):
|
|
"""The radius of excircles of a triangle.
|
|
|
|
An excircle of the triangle is a circle lying outside the triangle,
|
|
tangent to one of its sides and tangent to the extensions of the
|
|
other two.
|
|
|
|
Returns
|
|
=======
|
|
|
|
exradii : dict
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.polygon.Triangle.inradius
|
|
|
|
Examples
|
|
========
|
|
|
|
The exradius touches the side of the triangle to which it is keyed, e.g.
|
|
the exradius touching side 2 is:
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.exradii[t.sides[2]]
|
|
-2 + sqrt(10)
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/Exradius.html
|
|
.. [2] https://mathworld.wolfram.com/Excircles.html
|
|
|
|
"""
|
|
|
|
side = self.sides
|
|
a = side[0].length
|
|
b = side[1].length
|
|
c = side[2].length
|
|
s = (a+b+c)/2
|
|
area = self.area
|
|
exradii = {self.sides[0]: simplify(area/(s-a)),
|
|
self.sides[1]: simplify(area/(s-b)),
|
|
self.sides[2]: simplify(area/(s-c))}
|
|
|
|
return exradii
|
|
|
|
@property
|
|
def excenters(self):
|
|
"""Excenters of the triangle.
|
|
|
|
An excenter is the center of a circle that is tangent to a side of the
|
|
triangle and the extensions of the other two sides.
|
|
|
|
Returns
|
|
=======
|
|
|
|
excenters : dict
|
|
|
|
|
|
Examples
|
|
========
|
|
|
|
The excenters are keyed to the side of the triangle to which their corresponding
|
|
excircle is tangent: The center is keyed, e.g. the excenter of a circle touching
|
|
side 0 is:
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.excenters[t.sides[0]]
|
|
Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.polygon.Triangle.exradii
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mathworld.wolfram.com/Excircles.html
|
|
|
|
"""
|
|
|
|
s = self.sides
|
|
v = self.vertices
|
|
a = s[0].length
|
|
b = s[1].length
|
|
c = s[2].length
|
|
x = [v[0].x, v[1].x, v[2].x]
|
|
y = [v[0].y, v[1].y, v[2].y]
|
|
|
|
exc_coords = {
|
|
"x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)),
|
|
"x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)),
|
|
"x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)),
|
|
"y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)),
|
|
"y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)),
|
|
"y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c))
|
|
}
|
|
|
|
excenters = {
|
|
s[0]: Point(exc_coords["x1"], exc_coords["y1"]),
|
|
s[1]: Point(exc_coords["x2"], exc_coords["y2"]),
|
|
s[2]: Point(exc_coords["x3"], exc_coords["y3"])
|
|
}
|
|
|
|
return excenters
|
|
|
|
@property
|
|
def medians(self):
|
|
"""The medians of the triangle.
|
|
|
|
A median of a triangle is a straight line through a vertex and the
|
|
midpoint of the opposite side, and divides the triangle into two
|
|
equal areas.
|
|
|
|
Returns
|
|
=======
|
|
|
|
medians : dict
|
|
Each key is a vertex (Point) and each value is the median (Segment)
|
|
at that point.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.medians[p1]
|
|
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
|
|
|
|
"""
|
|
s = self.sides
|
|
v = self.vertices
|
|
return {v[0]: Segment(v[0], s[1].midpoint),
|
|
v[1]: Segment(v[1], s[2].midpoint),
|
|
v[2]: Segment(v[2], s[0].midpoint)}
|
|
|
|
@property
|
|
def medial(self):
|
|
"""The medial triangle of the triangle.
|
|
|
|
The triangle which is formed from the midpoints of the three sides.
|
|
|
|
Returns
|
|
=======
|
|
|
|
medial : Triangle
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.geometry.line.Segment.midpoint
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.medial
|
|
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
|
|
|
|
"""
|
|
s = self.sides
|
|
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
|
|
|
|
@property
|
|
def nine_point_circle(self):
|
|
"""The nine-point circle of the triangle.
|
|
|
|
Nine-point circle is the circumcircle of the medial triangle, which
|
|
passes through the feet of altitudes and the middle points of segments
|
|
connecting the vertices and the orthocenter.
|
|
|
|
Returns
|
|
=======
|
|
|
|
nine_point_circle : Circle
|
|
|
|
See also
|
|
========
|
|
|
|
sympy.geometry.line.Segment.midpoint
|
|
sympy.geometry.polygon.Triangle.medial
|
|
sympy.geometry.polygon.Triangle.orthocenter
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.nine_point_circle
|
|
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
|
|
|
|
"""
|
|
return Circle(*self.medial.vertices)
|
|
|
|
@property
|
|
def eulerline(self):
|
|
"""The Euler line of the triangle.
|
|
|
|
The line which passes through circumcenter, centroid and orthocenter.
|
|
|
|
Returns
|
|
=======
|
|
|
|
eulerline : Line (or Point for equilateral triangles in which case all
|
|
centers coincide)
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Point, Triangle
|
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
>>> t = Triangle(p1, p2, p3)
|
|
>>> t.eulerline
|
|
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
|
|
|
|
"""
|
|
if self.is_equilateral():
|
|
return self.orthocenter
|
|
return Line(self.orthocenter, self.circumcenter)
|
|
|
|
def rad(d):
|
|
"""Return the radian value for the given degrees (pi = 180 degrees)."""
|
|
return d*pi/180
|
|
|
|
|
|
def deg(r):
|
|
"""Return the degree value for the given radians (pi = 180 degrees)."""
|
|
return r/pi*180
|
|
|
|
|
|
def _slope(d):
|
|
rv = tan(rad(d))
|
|
return rv
|
|
|
|
|
|
def _asa(d1, l, d2):
|
|
"""Return triangle having side with length l on the x-axis."""
|
|
xy = Line((0, 0), slope=_slope(d1)).intersection(
|
|
Line((l, 0), slope=_slope(180 - d2)))[0]
|
|
return Triangle((0, 0), (l, 0), xy)
|
|
|
|
|
|
def _sss(l1, l2, l3):
|
|
"""Return triangle having side of length l1 on the x-axis."""
|
|
c1 = Circle((0, 0), l3)
|
|
c2 = Circle((l1, 0), l2)
|
|
inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
|
|
if not inter:
|
|
return None
|
|
pt = inter[0]
|
|
return Triangle((0, 0), (l1, 0), pt)
|
|
|
|
|
|
def _sas(l1, d, l2):
|
|
"""Return triangle having side with length l2 on the x-axis."""
|
|
p1 = Point(0, 0)
|
|
p2 = Point(l2, 0)
|
|
p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
|
|
return Triangle(p1, p2, p3)
|