You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
6.6 KiB
205 lines
6.6 KiB
from sympy.core.expr import ExprBuilder
|
|
from sympy.core.function import (Function, FunctionClass, Lambda)
|
|
from sympy.core.symbol import Dummy
|
|
from sympy.core.sympify import sympify, _sympify
|
|
from sympy.matrices.expressions import MatrixExpr
|
|
from sympy.matrices.matrices import MatrixBase
|
|
|
|
|
|
class ElementwiseApplyFunction(MatrixExpr):
|
|
r"""
|
|
Apply function to a matrix elementwise without evaluating.
|
|
|
|
Examples
|
|
========
|
|
|
|
It can be created by calling ``.applyfunc(<function>)`` on a matrix
|
|
expression:
|
|
|
|
>>> from sympy import MatrixSymbol
|
|
>>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
|
|
>>> from sympy import exp
|
|
>>> X = MatrixSymbol("X", 3, 3)
|
|
>>> X.applyfunc(exp)
|
|
Lambda(_d, exp(_d)).(X)
|
|
|
|
Otherwise using the class constructor:
|
|
|
|
>>> from sympy import eye
|
|
>>> expr = ElementwiseApplyFunction(exp, eye(3))
|
|
>>> expr
|
|
Lambda(_d, exp(_d)).(Matrix([
|
|
[1, 0, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 1]]))
|
|
>>> expr.doit()
|
|
Matrix([
|
|
[E, 1, 1],
|
|
[1, E, 1],
|
|
[1, 1, E]])
|
|
|
|
Notice the difference with the real mathematical functions:
|
|
|
|
>>> exp(eye(3))
|
|
Matrix([
|
|
[E, 0, 0],
|
|
[0, E, 0],
|
|
[0, 0, E]])
|
|
"""
|
|
|
|
def __new__(cls, function, expr):
|
|
expr = _sympify(expr)
|
|
if not expr.is_Matrix:
|
|
raise ValueError("{} must be a matrix instance.".format(expr))
|
|
|
|
if expr.shape == (1, 1):
|
|
# Check if the function returns a matrix, in that case, just apply
|
|
# the function instead of creating an ElementwiseApplyFunc object:
|
|
ret = function(expr)
|
|
if isinstance(ret, MatrixExpr):
|
|
return ret
|
|
|
|
if not isinstance(function, (FunctionClass, Lambda)):
|
|
d = Dummy('d')
|
|
function = Lambda(d, function(d))
|
|
|
|
function = sympify(function)
|
|
if not isinstance(function, (FunctionClass, Lambda)):
|
|
raise ValueError(
|
|
"{} should be compatible with SymPy function classes."
|
|
.format(function))
|
|
|
|
if 1 not in function.nargs:
|
|
raise ValueError(
|
|
'{} should be able to accept 1 arguments.'.format(function))
|
|
|
|
if not isinstance(function, Lambda):
|
|
d = Dummy('d')
|
|
function = Lambda(d, function(d))
|
|
|
|
obj = MatrixExpr.__new__(cls, function, expr)
|
|
return obj
|
|
|
|
@property
|
|
def function(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def expr(self):
|
|
return self.args[1]
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.expr.shape
|
|
|
|
def doit(self, **hints):
|
|
deep = hints.get("deep", True)
|
|
expr = self.expr
|
|
if deep:
|
|
expr = expr.doit(**hints)
|
|
function = self.function
|
|
if isinstance(function, Lambda) and function.is_identity:
|
|
# This is a Lambda containing the identity function.
|
|
return expr
|
|
if isinstance(expr, MatrixBase):
|
|
return expr.applyfunc(self.function)
|
|
elif isinstance(expr, ElementwiseApplyFunction):
|
|
return ElementwiseApplyFunction(
|
|
lambda x: self.function(expr.function(x)),
|
|
expr.expr
|
|
).doit(**hints)
|
|
else:
|
|
return self
|
|
|
|
def _entry(self, i, j, **kwargs):
|
|
return self.function(self.expr._entry(i, j, **kwargs))
|
|
|
|
def _get_function_fdiff(self):
|
|
d = Dummy("d")
|
|
function = self.function(d)
|
|
fdiff = function.diff(d)
|
|
if isinstance(fdiff, Function):
|
|
fdiff = type(fdiff)
|
|
else:
|
|
fdiff = Lambda(d, fdiff)
|
|
return fdiff
|
|
|
|
def _eval_derivative(self, x):
|
|
from sympy.matrices.expressions.hadamard import hadamard_product
|
|
dexpr = self.expr.diff(x)
|
|
fdiff = self._get_function_fdiff()
|
|
return hadamard_product(
|
|
dexpr,
|
|
ElementwiseApplyFunction(fdiff, self.expr)
|
|
)
|
|
|
|
def _eval_derivative_matrix_lines(self, x):
|
|
from sympy.matrices.expressions.special import Identity
|
|
from sympy.tensor.array.expressions.array_expressions import ArrayContraction
|
|
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
|
|
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
|
|
|
fdiff = self._get_function_fdiff()
|
|
lr = self.expr._eval_derivative_matrix_lines(x)
|
|
ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
|
|
if 1 in x.shape:
|
|
# Vector:
|
|
iscolumn = self.shape[1] == 1
|
|
for i in lr:
|
|
if iscolumn:
|
|
ptr1 = i.first_pointer
|
|
ptr2 = Identity(self.shape[1])
|
|
else:
|
|
ptr1 = Identity(self.shape[0])
|
|
ptr2 = i.second_pointer
|
|
|
|
subexpr = ExprBuilder(
|
|
ArrayDiagonal,
|
|
[
|
|
ExprBuilder(
|
|
ArrayTensorProduct,
|
|
[
|
|
ewdiff,
|
|
ptr1,
|
|
ptr2,
|
|
]
|
|
),
|
|
(0, 2) if iscolumn else (1, 4)
|
|
],
|
|
validator=ArrayDiagonal._validate
|
|
)
|
|
i._lines = [subexpr]
|
|
i._first_pointer_parent = subexpr.args[0].args
|
|
i._first_pointer_index = 1
|
|
i._second_pointer_parent = subexpr.args[0].args
|
|
i._second_pointer_index = 2
|
|
else:
|
|
# Matrix case:
|
|
for i in lr:
|
|
ptr1 = i.first_pointer
|
|
ptr2 = i.second_pointer
|
|
newptr1 = Identity(ptr1.shape[1])
|
|
newptr2 = Identity(ptr2.shape[1])
|
|
subexpr = ExprBuilder(
|
|
ArrayContraction,
|
|
[
|
|
ExprBuilder(
|
|
ArrayTensorProduct,
|
|
[ptr1, newptr1, ewdiff, ptr2, newptr2]
|
|
),
|
|
(1, 2, 4),
|
|
(5, 7, 8),
|
|
],
|
|
validator=ArrayContraction._validate
|
|
)
|
|
i._first_pointer_parent = subexpr.args[0].args
|
|
i._first_pointer_index = 1
|
|
i._second_pointer_parent = subexpr.args[0].args
|
|
i._second_pointer_index = 4
|
|
i._lines = [subexpr]
|
|
return lr
|
|
|
|
def _eval_transpose(self):
|
|
from sympy.matrices.expressions.transpose import Transpose
|
|
return self.func(self.function, Transpose(self.expr).doit())
|