You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
534 lines
18 KiB
534 lines
18 KiB
"""Tests for Groebner bases. """
|
|
|
|
from sympy.polys.groebnertools import (
|
|
groebner, sig, sig_key,
|
|
lbp, lbp_key, critical_pair,
|
|
cp_key, is_rewritable_or_comparable,
|
|
Sign, Polyn, Num, s_poly, f5_reduce,
|
|
groebner_lcm, groebner_gcd, is_groebner,
|
|
is_reduced
|
|
)
|
|
|
|
from sympy.polys.fglmtools import _representing_matrices
|
|
from sympy.polys.orderings import lex, grlex
|
|
|
|
from sympy.polys.rings import ring, xring
|
|
from sympy.polys.domains import ZZ, QQ
|
|
|
|
from sympy.testing.pytest import slow
|
|
from sympy.polys import polyconfig as config
|
|
|
|
def _do_test_groebner():
|
|
R, x,y = ring("x,y", QQ, lex)
|
|
f = x**2 + 2*x*y**2
|
|
g = x*y + 2*y**3 - 1
|
|
|
|
assert groebner([f, g], R) == [x, y**3 - QQ(1,2)]
|
|
|
|
R, y,x = ring("y,x", QQ, lex)
|
|
f = 2*x**2*y + y**2
|
|
g = 2*x**3 + x*y - 1
|
|
|
|
assert groebner([f, g], R) == [y, x**3 - QQ(1,2)]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = x - z**2
|
|
g = y - z**3
|
|
|
|
assert groebner([f, g], R) == [f, g]
|
|
|
|
R, x,y = ring("x,y", QQ, grlex)
|
|
f = x**3 - 2*x*y
|
|
g = x**2*y + x - 2*y**2
|
|
|
|
assert groebner([f, g], R) == [x**2, x*y, -QQ(1,2)*x + y**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = -x**2 + y
|
|
g = -x**3 + z
|
|
|
|
assert groebner([f, g], R) == [x**2 - y, x*y - z, x*z - y**2, y**3 - z**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, grlex)
|
|
f = -x**2 + y
|
|
g = -x**3 + z
|
|
|
|
assert groebner([f, g], R) == [y**3 - z**2, x**2 - y, x*y - z, x*z - y**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = -x**2 + z
|
|
g = -x**3 + y
|
|
|
|
assert groebner([f, g], R) == [x**2 - z, x*y - z**2, x*z - y, y**2 - z**3]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, grlex)
|
|
f = -x**2 + z
|
|
g = -x**3 + y
|
|
|
|
assert groebner([f, g], R) == [-y**2 + z**3, x**2 - z, x*y - z**2, x*z - y]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = x - y**2
|
|
g = -y**3 + z
|
|
|
|
assert groebner([f, g], R) == [x - y**2, y**3 - z]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, grlex)
|
|
f = x - y**2
|
|
g = -y**3 + z
|
|
|
|
assert groebner([f, g], R) == [x**2 - y*z, x*y - z, -x + y**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = x - z**2
|
|
g = y - z**3
|
|
|
|
assert groebner([f, g], R) == [x - z**2, y - z**3]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, grlex)
|
|
f = x - z**2
|
|
g = y - z**3
|
|
|
|
assert groebner([f, g], R) == [x**2 - y*z, x*z - y, -x + z**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = -y**2 + z
|
|
g = x - y**3
|
|
|
|
assert groebner([f, g], R) == [x - y*z, y**2 - z]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, grlex)
|
|
f = -y**2 + z
|
|
g = x - y**3
|
|
|
|
assert groebner([f, g], R) == [-x**2 + z**3, x*y - z**2, y**2 - z, -x + y*z]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = y - z**2
|
|
g = x - z**3
|
|
|
|
assert groebner([f, g], R) == [x - z**3, y - z**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, grlex)
|
|
f = y - z**2
|
|
g = x - z**3
|
|
|
|
assert groebner([f, g], R) == [-x**2 + y**3, x*z - y**2, -x + y*z, -y + z**2]
|
|
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
f = 4*x**2*y**2 + 4*x*y + 1
|
|
g = x**2 + y**2 - 1
|
|
|
|
assert groebner([f, g], R) == [
|
|
x - 4*y**7 + 8*y**5 - 7*y**3 + 3*y,
|
|
y**8 - 2*y**6 + QQ(3,2)*y**4 - QQ(1,2)*y**2 + QQ(1,16),
|
|
]
|
|
|
|
def test_groebner_buchberger():
|
|
with config.using(groebner='buchberger'):
|
|
_do_test_groebner()
|
|
|
|
def test_groebner_f5b():
|
|
with config.using(groebner='f5b'):
|
|
_do_test_groebner()
|
|
|
|
def _do_test_benchmark_minpoly():
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
|
|
F = [x**3 + x + 1, y**2 + y + 1, (x + y) * z - (x**2 + y)]
|
|
G = [x + QQ(155,2067)*z**5 - QQ(355,689)*z**4 + QQ(6062,2067)*z**3 - QQ(3687,689)*z**2 + QQ(6878,2067)*z - QQ(25,53),
|
|
y + QQ(4,53)*z**5 - QQ(91,159)*z**4 + QQ(523,159)*z**3 - QQ(387,53)*z**2 + QQ(1043,159)*z - QQ(308,159),
|
|
z**6 - 7*z**5 + 41*z**4 - 82*z**3 + 89*z**2 - 46*z + 13]
|
|
|
|
assert groebner(F, R) == G
|
|
|
|
def test_benchmark_minpoly_buchberger():
|
|
with config.using(groebner='buchberger'):
|
|
_do_test_benchmark_minpoly()
|
|
|
|
def test_benchmark_minpoly_f5b():
|
|
with config.using(groebner='f5b'):
|
|
_do_test_benchmark_minpoly()
|
|
|
|
|
|
def test_benchmark_coloring():
|
|
V = range(1, 12 + 1)
|
|
E = [(1, 2), (2, 3), (1, 4), (1, 6), (1, 12), (2, 5), (2, 7), (3, 8), (3, 10),
|
|
(4, 11), (4, 9), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11),
|
|
(11, 12), (5, 12), (5, 9), (6, 10), (7, 11), (8, 12), (3, 4)]
|
|
|
|
R, V = xring([ "x%d" % v for v in V ], QQ, lex)
|
|
E = [(V[i - 1], V[j - 1]) for i, j in E]
|
|
|
|
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = V
|
|
|
|
I3 = [x**3 - 1 for x in V]
|
|
Ig = [x**2 + x*y + y**2 for x, y in E]
|
|
|
|
I = I3 + Ig
|
|
|
|
assert groebner(I[:-1], R) == [
|
|
x1 + x11 + x12,
|
|
x2 - x11,
|
|
x3 - x12,
|
|
x4 - x12,
|
|
x5 + x11 + x12,
|
|
x6 - x11,
|
|
x7 - x12,
|
|
x8 + x11 + x12,
|
|
x9 - x11,
|
|
x10 + x11 + x12,
|
|
x11**2 + x11*x12 + x12**2,
|
|
x12**3 - 1,
|
|
]
|
|
|
|
assert groebner(I, R) == [1]
|
|
|
|
|
|
def _do_test_benchmark_katsura_3():
|
|
R, x0,x1,x2 = ring("x:3", ZZ, lex)
|
|
I = [x0 + 2*x1 + 2*x2 - 1,
|
|
x0**2 + 2*x1**2 + 2*x2**2 - x0,
|
|
2*x0*x1 + 2*x1*x2 - x1]
|
|
|
|
assert groebner(I, R) == [
|
|
-7 + 7*x0 + 8*x2 + 158*x2**2 - 420*x2**3,
|
|
7*x1 + 3*x2 - 79*x2**2 + 210*x2**3,
|
|
x2 + x2**2 - 40*x2**3 + 84*x2**4,
|
|
]
|
|
|
|
R, x0,x1,x2 = ring("x:3", ZZ, grlex)
|
|
I = [ i.set_ring(R) for i in I ]
|
|
|
|
assert groebner(I, R) == [
|
|
7*x1 + 3*x2 - 79*x2**2 + 210*x2**3,
|
|
-x1 + x2 - 3*x2**2 + 5*x1**2,
|
|
-x1 - 4*x2 + 10*x1*x2 + 12*x2**2,
|
|
-1 + x0 + 2*x1 + 2*x2,
|
|
]
|
|
|
|
def test_benchmark_katsura3_buchberger():
|
|
with config.using(groebner='buchberger'):
|
|
_do_test_benchmark_katsura_3()
|
|
|
|
def test_benchmark_katsura3_f5b():
|
|
with config.using(groebner='f5b'):
|
|
_do_test_benchmark_katsura_3()
|
|
|
|
def _do_test_benchmark_katsura_4():
|
|
R, x0,x1,x2,x3 = ring("x:4", ZZ, lex)
|
|
I = [x0 + 2*x1 + 2*x2 + 2*x3 - 1,
|
|
x0**2 + 2*x1**2 + 2*x2**2 + 2*x3**2 - x0,
|
|
2*x0*x1 + 2*x1*x2 + 2*x2*x3 - x1,
|
|
x1**2 + 2*x0*x2 + 2*x1*x3 - x2]
|
|
|
|
assert groebner(I, R) == [
|
|
5913075*x0 - 159690237696*x3**7 + 31246269696*x3**6 + 27439610544*x3**5 - 6475723368*x3**4 - 838935856*x3**3 + 275119624*x3**2 + 4884038*x3 - 5913075,
|
|
1971025*x1 - 97197721632*x3**7 + 73975630752*x3**6 - 12121915032*x3**5 - 2760941496*x3**4 + 814792828*x3**3 - 1678512*x3**2 - 9158924*x3,
|
|
5913075*x2 + 371438283744*x3**7 - 237550027104*x3**6 + 22645939824*x3**5 + 11520686172*x3**4 - 2024910556*x3**3 - 132524276*x3**2 + 30947828*x3,
|
|
128304*x3**8 - 93312*x3**7 + 15552*x3**6 + 3144*x3**5 -
|
|
1120*x3**4 + 36*x3**3 + 15*x3**2 - x3,
|
|
]
|
|
|
|
R, x0,x1,x2,x3 = ring("x:4", ZZ, grlex)
|
|
I = [ i.set_ring(R) for i in I ]
|
|
|
|
assert groebner(I, R) == [
|
|
393*x1 - 4662*x2**2 + 4462*x2*x3 - 59*x2 + 224532*x3**4 - 91224*x3**3 - 678*x3**2 + 2046*x3,
|
|
-x1 + 196*x2**3 - 21*x2**2 + 60*x2*x3 - 18*x2 - 168*x3**3 + 83*x3**2 - 9*x3,
|
|
-6*x1 + 1134*x2**2*x3 - 189*x2**2 - 466*x2*x3 + 32*x2 - 630*x3**3 + 57*x3**2 + 51*x3,
|
|
33*x1 + 63*x2**2 + 2268*x2*x3**2 - 188*x2*x3 + 34*x2 + 2520*x3**3 - 849*x3**2 + 3*x3,
|
|
7*x1**2 - x1 - 7*x2**2 - 24*x2*x3 + 3*x2 - 15*x3**2 + 5*x3,
|
|
14*x1*x2 - x1 + 14*x2**2 + 18*x2*x3 - 4*x2 + 6*x3**2 - 2*x3,
|
|
14*x1*x3 - x1 + 7*x2**2 + 32*x2*x3 - 4*x2 + 27*x3**2 - 9*x3,
|
|
x0 + 2*x1 + 2*x2 + 2*x3 - 1,
|
|
]
|
|
|
|
def test_benchmark_kastura_4_buchberger():
|
|
with config.using(groebner='buchberger'):
|
|
_do_test_benchmark_katsura_4()
|
|
|
|
def test_benchmark_kastura_4_f5b():
|
|
with config.using(groebner='f5b'):
|
|
_do_test_benchmark_katsura_4()
|
|
|
|
def _do_test_benchmark_czichowski():
|
|
R, x,t = ring("x,t", ZZ, lex)
|
|
I = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9,
|
|
(-72 - 72*t)*x**7 + (-256 - 252*t)*x**6 + (192 + 192*t)*x**5 + (1280 + 1260*t)*x**4 + (312 + 312*t)*x**3 + (-404*t)*x**2 + (-576 - 576*t)*x + 96 + 108*t]
|
|
|
|
assert groebner(I, R) == [
|
|
3725588592068034903797967297424801242396746870413359539263038139343329273586196480000*x -
|
|
160420835591776763325581422211936558925462474417709511019228211783493866564923546661604487873*t**7 -
|
|
1406108495478033395547109582678806497509499966197028487131115097902188374051595011248311352864*t**6 -
|
|
5241326875850889518164640374668786338033653548841427557880599579174438246266263602956254030352*t**5 -
|
|
10758917262823299139373269714910672770004760114329943852726887632013485035262879510837043892416*t**4 -
|
|
13119383576444715672578819534846747735372132018341964647712009275306635391456880068261130581248*t**3 -
|
|
9491412317016197146080450036267011389660653495578680036574753839055748080962214787557853941760*t**2 -
|
|
3767520915562795326943800040277726397326609797172964377014046018280260848046603967211258368000*t -
|
|
632314652371226552085897259159210286886724229880266931574701654721512325555116066073245696000,
|
|
610733380717522355121*t**8 +
|
|
6243748742141230639968*t**7 +
|
|
27761407182086143225024*t**6 +
|
|
70066148869420956398592*t**5 +
|
|
109701225644313784229376*t**4 +
|
|
109009005495588442152960*t**3 +
|
|
67072101084384786432000*t**2 +
|
|
23339979742629593088000*t +
|
|
3513592776846090240000,
|
|
]
|
|
|
|
R, x,t = ring("x,t", ZZ, grlex)
|
|
I = [ i.set_ring(R) for i in I ]
|
|
|
|
assert groebner(I, R) == [
|
|
16996618586000601590732959134095643086442*t**3*x -
|
|
32936701459297092865176560282688198064839*t**3 +
|
|
78592411049800639484139414821529525782364*t**2*x -
|
|
120753953358671750165454009478961405619916*t**2 +
|
|
120988399875140799712152158915653654637280*t*x -
|
|
144576390266626470824138354942076045758736*t +
|
|
60017634054270480831259316163620768960*x**2 +
|
|
61976058033571109604821862786675242894400*x -
|
|
56266268491293858791834120380427754600960,
|
|
576689018321912327136790519059646508441672750656050290242749*t**4 +
|
|
2326673103677477425562248201573604572527893938459296513327336*t**3 +
|
|
110743790416688497407826310048520299245819959064297990236000*t**2*x +
|
|
3308669114229100853338245486174247752683277925010505284338016*t**2 +
|
|
323150205645687941261103426627818874426097912639158572428800*t*x +
|
|
1914335199925152083917206349978534224695445819017286960055680*t +
|
|
861662882561803377986838989464278045397192862768588480000*x**2 +
|
|
235296483281783440197069672204341465480107019878814196672000*x +
|
|
361850798943225141738895123621685122544503614946436727532800,
|
|
-117584925286448670474763406733005510014188341867*t**3 +
|
|
68566565876066068463853874568722190223721653044*t**2*x -
|
|
435970731348366266878180788833437896139920683940*t**2 +
|
|
196297602447033751918195568051376792491869233408*t*x -
|
|
525011527660010557871349062870980202067479780112*t +
|
|
517905853447200553360289634770487684447317120*x**3 +
|
|
569119014870778921949288951688799397569321920*x**2 +
|
|
138877356748142786670127389526667463202210102080*x -
|
|
205109210539096046121625447192779783475018619520,
|
|
-3725142681462373002731339445216700112264527*t**3 +
|
|
583711207282060457652784180668273817487940*t**2*x -
|
|
12381382393074485225164741437227437062814908*t**2 +
|
|
151081054097783125250959636747516827435040*t*x**2 +
|
|
1814103857455163948531448580501928933873280*t*x -
|
|
13353115629395094645843682074271212731433648*t +
|
|
236415091385250007660606958022544983766080*x**2 +
|
|
1390443278862804663728298060085399578417600*x -
|
|
4716885828494075789338754454248931750698880,
|
|
]
|
|
|
|
# NOTE: This is very slow (> 2 minutes on 3.4 GHz) without GMPY
|
|
@slow
|
|
def test_benchmark_czichowski_buchberger():
|
|
with config.using(groebner='buchberger'):
|
|
_do_test_benchmark_czichowski()
|
|
|
|
def test_benchmark_czichowski_f5b():
|
|
with config.using(groebner='f5b'):
|
|
_do_test_benchmark_czichowski()
|
|
|
|
def _do_test_benchmark_cyclic_4():
|
|
R, a,b,c,d = ring("a,b,c,d", ZZ, lex)
|
|
|
|
I = [a + b + c + d,
|
|
a*b + a*d + b*c + b*d,
|
|
a*b*c + a*b*d + a*c*d + b*c*d,
|
|
a*b*c*d - 1]
|
|
|
|
assert groebner(I, R) == [
|
|
4*a + 3*d**9 - 4*d**5 - 3*d,
|
|
4*b + 4*c - 3*d**9 + 4*d**5 + 7*d,
|
|
4*c**2 + 3*d**10 - 4*d**6 - 3*d**2,
|
|
4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1
|
|
]
|
|
|
|
R, a,b,c,d = ring("a,b,c,d", ZZ, grlex)
|
|
I = [ i.set_ring(R) for i in I ]
|
|
|
|
assert groebner(I, R) == [
|
|
3*b*c - c**2 + d**6 - 3*d**2,
|
|
-b + 3*c**2*d**3 - c - d**5 - 4*d,
|
|
-b + 3*c*d**4 + 2*c + 2*d**5 + 2*d,
|
|
c**4 + 2*c**2*d**2 - d**4 - 2,
|
|
c**3*d + c*d**3 + d**4 + 1,
|
|
b*c**2 - c**3 - c**2*d - 2*c*d**2 - d**3,
|
|
b**2 - c**2, b*d + c**2 + c*d + d**2,
|
|
a + b + c + d
|
|
]
|
|
|
|
def test_benchmark_cyclic_4_buchberger():
|
|
with config.using(groebner='buchberger'):
|
|
_do_test_benchmark_cyclic_4()
|
|
|
|
def test_benchmark_cyclic_4_f5b():
|
|
with config.using(groebner='f5b'):
|
|
_do_test_benchmark_cyclic_4()
|
|
|
|
def test_sig_key():
|
|
s1 = sig((0,) * 3, 2)
|
|
s2 = sig((1,) * 3, 4)
|
|
s3 = sig((2,) * 3, 2)
|
|
|
|
assert sig_key(s1, lex) > sig_key(s2, lex)
|
|
assert sig_key(s2, lex) < sig_key(s3, lex)
|
|
|
|
|
|
def test_lbp_key():
|
|
R, x,y,z,t = ring("x,y,z,t", ZZ, lex)
|
|
|
|
p1 = lbp(sig((0,) * 4, 3), R.zero, 12)
|
|
p2 = lbp(sig((0,) * 4, 4), R.zero, 13)
|
|
p3 = lbp(sig((0,) * 4, 4), R.zero, 12)
|
|
|
|
assert lbp_key(p1) > lbp_key(p2)
|
|
assert lbp_key(p2) < lbp_key(p3)
|
|
|
|
|
|
def test_critical_pair():
|
|
# from cyclic4 with grlex
|
|
R, x,y,z,t = ring("x,y,z,t", QQ, grlex)
|
|
|
|
p1 = (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4)
|
|
q1 = (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2)
|
|
|
|
p2 = (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5)
|
|
q2 = (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13)
|
|
|
|
assert critical_pair(p1, q1, R) == (
|
|
((0, 0, 1, 2), 2), ((0, 0, 1, 2), QQ(-1, 1)), (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2),
|
|
((0, 1, 0, 0), 4), ((0, 1, 0, 0), QQ(1, 1)), (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4)
|
|
)
|
|
assert critical_pair(p2, q2, R) == (
|
|
((0, 0, 4, 2), 2), ((0, 0, 2, 0), QQ(1, 1)), (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13),
|
|
((0, 0, 0, 5), 3), ((0, 0, 0, 3), QQ(1, 1)), (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5)
|
|
)
|
|
|
|
def test_cp_key():
|
|
# from cyclic4 with grlex
|
|
R, x,y,z,t = ring("x,y,z,t", QQ, grlex)
|
|
|
|
p1 = (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4)
|
|
q1 = (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2)
|
|
|
|
p2 = (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5)
|
|
q2 = (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13)
|
|
|
|
cp1 = critical_pair(p1, q1, R)
|
|
cp2 = critical_pair(p2, q2, R)
|
|
|
|
assert cp_key(cp1, R) < cp_key(cp2, R)
|
|
|
|
cp1 = critical_pair(p1, p2, R)
|
|
cp2 = critical_pair(q1, q2, R)
|
|
|
|
assert cp_key(cp1, R) < cp_key(cp2, R)
|
|
|
|
|
|
def test_is_rewritable_or_comparable():
|
|
# from katsura4 with grlex
|
|
R, x,y,z,t = ring("x,y,z,t", QQ, grlex)
|
|
|
|
p = lbp(sig((0, 0, 2, 1), 2), R.zero, 2)
|
|
B = [lbp(sig((0, 0, 0, 1), 2), QQ(2,45)*y**2 + QQ(1,5)*y*z + QQ(5,63)*y*t + z**2*t + QQ(4,45)*z**2 + QQ(76,35)*z*t**2 - QQ(32,105)*z*t + QQ(13,7)*t**3 - QQ(13,21)*t**2, 6)]
|
|
|
|
# rewritable:
|
|
assert is_rewritable_or_comparable(Sign(p), Num(p), B) is True
|
|
|
|
p = lbp(sig((0, 1, 1, 0), 2), R.zero, 7)
|
|
B = [lbp(sig((0, 0, 0, 0), 3), QQ(10,3)*y*z + QQ(4,3)*y*t - QQ(1,3)*y + 4*z**2 + QQ(22,3)*z*t - QQ(4,3)*z + 4*t**2 - QQ(4,3)*t, 3)]
|
|
|
|
# comparable:
|
|
assert is_rewritable_or_comparable(Sign(p), Num(p), B) is True
|
|
|
|
|
|
def test_f5_reduce():
|
|
# katsura3 with lex
|
|
R, x,y,z = ring("x,y,z", QQ, lex)
|
|
|
|
F = [(((0, 0, 0), 1), x + 2*y + 2*z - 1, 1),
|
|
(((0, 0, 0), 2), 6*y**2 + 8*y*z - 2*y + 6*z**2 - 2*z, 2),
|
|
(((0, 0, 0), 3), QQ(10,3)*y*z - QQ(1,3)*y + 4*z**2 - QQ(4,3)*z, 3),
|
|
(((0, 0, 1), 2), y + 30*z**3 - QQ(79,7)*z**2 + QQ(3,7)*z, 4),
|
|
(((0, 0, 2), 2), z**4 - QQ(10,21)*z**3 + QQ(1,84)*z**2 + QQ(1,84)*z, 5)]
|
|
|
|
cp = critical_pair(F[0], F[1], R)
|
|
s = s_poly(cp)
|
|
|
|
assert f5_reduce(s, F) == (((0, 2, 0), 1), R.zero, 1)
|
|
|
|
s = lbp(sig(Sign(s)[0], 100), Polyn(s), Num(s))
|
|
assert f5_reduce(s, F) == s
|
|
|
|
|
|
def test_representing_matrices():
|
|
R, x,y = ring("x,y", QQ, grlex)
|
|
|
|
basis = [(0, 0), (0, 1), (1, 0), (1, 1)]
|
|
F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1]
|
|
|
|
assert _representing_matrices(basis, F, R) == [
|
|
[[QQ(0, 1), QQ(0, 1),-QQ(1, 1), QQ(3, 1)],
|
|
[QQ(0, 1), QQ(0, 1), QQ(3, 1),-QQ(4, 1)],
|
|
[QQ(1, 1), QQ(0, 1), QQ(1, 1), QQ(6, 1)],
|
|
[QQ(0, 1), QQ(1, 1), QQ(0, 1), QQ(1, 1)]],
|
|
[[QQ(0, 1), QQ(1, 1), QQ(0, 1),-QQ(2, 1)],
|
|
[QQ(1, 1),-QQ(1, 1), QQ(0, 1), QQ(6, 1)],
|
|
[QQ(0, 1), QQ(2, 1), QQ(0, 1), QQ(3, 1)],
|
|
[QQ(0, 1), QQ(0, 1), QQ(1, 1),-QQ(1, 1)]]]
|
|
|
|
def test_groebner_lcm():
|
|
R, x,y,z = ring("x,y,z", ZZ)
|
|
|
|
assert groebner_lcm(x**2 - y**2, x - y) == x**2 - y**2
|
|
assert groebner_lcm(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x**2 - 2*y**2
|
|
|
|
R, x,y,z = ring("x,y,z", QQ)
|
|
|
|
assert groebner_lcm(x**2 - y**2, x - y) == x**2 - y**2
|
|
assert groebner_lcm(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x**2 - 2*y**2
|
|
|
|
R, x,y = ring("x,y", ZZ)
|
|
|
|
assert groebner_lcm(x**2*y, x*y**2) == x**2*y**2
|
|
|
|
f = 2*x*y**5 - 3*x*y**4 - 2*x*y**3 + 3*x*y**2
|
|
g = y**5 - 2*y**3 + y
|
|
h = 2*x*y**7 - 3*x*y**6 - 4*x*y**5 + 6*x*y**4 + 2*x*y**3 - 3*x*y**2
|
|
|
|
assert groebner_lcm(f, g) == h
|
|
|
|
f = x**3 - 3*x**2*y - 9*x*y**2 - 5*y**3
|
|
g = x**4 + 6*x**3*y + 12*x**2*y**2 + 10*x*y**3 + 3*y**4
|
|
h = x**5 + x**4*y - 18*x**3*y**2 - 50*x**2*y**3 - 47*x*y**4 - 15*y**5
|
|
|
|
assert groebner_lcm(f, g) == h
|
|
|
|
def test_groebner_gcd():
|
|
R, x,y,z = ring("x,y,z", ZZ)
|
|
|
|
assert groebner_gcd(x**2 - y**2, x - y) == x - y
|
|
assert groebner_gcd(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x - 2*y
|
|
|
|
R, x,y,z = ring("x,y,z", QQ)
|
|
|
|
assert groebner_gcd(x**2 - y**2, x - y) == x - y
|
|
assert groebner_gcd(2*x**2 - 2*y**2, 2*x - 2*y) == x - y
|
|
|
|
def test_is_groebner():
|
|
R, x,y = ring("x,y", QQ, grlex)
|
|
valid_groebner = [x**2, x*y, -QQ(1,2)*x + y**2]
|
|
invalid_groebner = [x**3, x*y, -QQ(1,2)*x + y**2]
|
|
assert is_groebner(valid_groebner, R) is True
|
|
assert is_groebner(invalid_groebner, R) is False
|
|
|
|
def test_is_reduced():
|
|
R, x, y = ring("x,y", QQ, lex)
|
|
f = x**2 + 2*x*y**2
|
|
g = x*y + 2*y**3 - 1
|
|
assert is_reduced([f, g], R) == False
|
|
G = groebner([f, g], R)
|
|
assert is_reduced(G, R) == True
|