You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
627 lines
20 KiB
627 lines
20 KiB
"""
|
|
Important note on tests in this module - the Aesara printing functions use a
|
|
global cache by default, which means that tests using it will modify global
|
|
state and thus not be independent from each other. Instead of using the "cache"
|
|
keyword argument each time, this module uses the aesara_code_ and
|
|
aesara_function_ functions defined below which default to using a new, empty
|
|
cache instead.
|
|
"""
|
|
|
|
import logging
|
|
|
|
from sympy.external import import_module
|
|
from sympy.testing.pytest import raises, SKIP
|
|
|
|
from sympy.utilities.exceptions import ignore_warnings
|
|
|
|
|
|
aesaralogger = logging.getLogger('aesara.configdefaults')
|
|
aesaralogger.setLevel(logging.CRITICAL)
|
|
aesara = import_module('aesara')
|
|
aesaralogger.setLevel(logging.WARNING)
|
|
|
|
|
|
if aesara:
|
|
import numpy as np
|
|
aet = aesara.tensor
|
|
from aesara.scalar.basic import Scalar
|
|
from aesara.graph.basic import Variable
|
|
from aesara.tensor.var import TensorVariable
|
|
from aesara.tensor.elemwise import Elemwise, DimShuffle
|
|
from aesara.tensor.math import Dot
|
|
|
|
from sympy.printing.aesaracode import true_divide
|
|
|
|
xt, yt, zt = [aet.scalar(name, 'floatX') for name in 'xyz']
|
|
Xt, Yt, Zt = [aet.tensor('floatX', (False, False), name=n) for n in 'XYZ']
|
|
else:
|
|
#bin/test will not execute any tests now
|
|
disabled = True
|
|
|
|
import sympy as sy
|
|
from sympy.core.singleton import S
|
|
from sympy.abc import x, y, z, t
|
|
from sympy.printing.aesaracode import (aesara_code, dim_handling,
|
|
aesara_function)
|
|
|
|
|
|
# Default set of matrix symbols for testing - make square so we can both
|
|
# multiply and perform elementwise operations between them.
|
|
X, Y, Z = [sy.MatrixSymbol(n, 4, 4) for n in 'XYZ']
|
|
|
|
# For testing AppliedUndef
|
|
f_t = sy.Function('f')(t)
|
|
|
|
|
|
def aesara_code_(expr, **kwargs):
|
|
""" Wrapper for aesara_code that uses a new, empty cache by default. """
|
|
kwargs.setdefault('cache', {})
|
|
return aesara_code(expr, **kwargs)
|
|
|
|
def aesara_function_(inputs, outputs, **kwargs):
|
|
""" Wrapper for aesara_function that uses a new, empty cache by default. """
|
|
kwargs.setdefault('cache', {})
|
|
return aesara_function(inputs, outputs, **kwargs)
|
|
|
|
|
|
def fgraph_of(*exprs):
|
|
""" Transform SymPy expressions into Aesara Computation.
|
|
|
|
Parameters
|
|
==========
|
|
exprs
|
|
SymPy expressions
|
|
|
|
Returns
|
|
=======
|
|
aesara.graph.fg.FunctionGraph
|
|
"""
|
|
outs = list(map(aesara_code_, exprs))
|
|
ins = list(aesara.graph.basic.graph_inputs(outs))
|
|
ins, outs = aesara.graph.basic.clone(ins, outs)
|
|
return aesara.graph.fg.FunctionGraph(ins, outs)
|
|
|
|
|
|
def aesara_simplify(fgraph):
|
|
""" Simplify a Aesara Computation.
|
|
|
|
Parameters
|
|
==========
|
|
fgraph : aesara.graph.fg.FunctionGraph
|
|
|
|
Returns
|
|
=======
|
|
aesara.graph.fg.FunctionGraph
|
|
"""
|
|
mode = aesara.compile.get_default_mode().excluding("fusion")
|
|
fgraph = fgraph.clone()
|
|
mode.optimizer.optimize(fgraph)
|
|
return fgraph
|
|
|
|
|
|
def theq(a, b):
|
|
""" Test two Aesara objects for equality.
|
|
|
|
Also accepts numeric types and lists/tuples of supported types.
|
|
|
|
Note - debugprint() has a bug where it will accept numeric types but does
|
|
not respect the "file" argument and in this case and instead prints the number
|
|
to stdout and returns an empty string. This can lead to tests passing where
|
|
they should fail because any two numbers will always compare as equal. To
|
|
prevent this we treat numbers as a separate case.
|
|
"""
|
|
numeric_types = (int, float, np.number)
|
|
a_is_num = isinstance(a, numeric_types)
|
|
b_is_num = isinstance(b, numeric_types)
|
|
|
|
# Compare numeric types using regular equality
|
|
if a_is_num or b_is_num:
|
|
if not (a_is_num and b_is_num):
|
|
return False
|
|
|
|
return a == b
|
|
|
|
# Compare sequences element-wise
|
|
a_is_seq = isinstance(a, (tuple, list))
|
|
b_is_seq = isinstance(b, (tuple, list))
|
|
|
|
if a_is_seq or b_is_seq:
|
|
if not (a_is_seq and b_is_seq) or type(a) != type(b):
|
|
return False
|
|
|
|
return list(map(theq, a)) == list(map(theq, b))
|
|
|
|
# Otherwise, assume debugprint() can handle it
|
|
astr = aesara.printing.debugprint(a, file='str')
|
|
bstr = aesara.printing.debugprint(b, file='str')
|
|
|
|
# Check for bug mentioned above
|
|
for argname, argval, argstr in [('a', a, astr), ('b', b, bstr)]:
|
|
if argstr == '':
|
|
raise TypeError(
|
|
'aesara.printing.debugprint(%s) returned empty string '
|
|
'(%s is instance of %r)'
|
|
% (argname, argname, type(argval))
|
|
)
|
|
|
|
return astr == bstr
|
|
|
|
|
|
def test_example_symbols():
|
|
"""
|
|
Check that the example symbols in this module print to their Aesara
|
|
equivalents, as many of the other tests depend on this.
|
|
"""
|
|
assert theq(xt, aesara_code_(x))
|
|
assert theq(yt, aesara_code_(y))
|
|
assert theq(zt, aesara_code_(z))
|
|
assert theq(Xt, aesara_code_(X))
|
|
assert theq(Yt, aesara_code_(Y))
|
|
assert theq(Zt, aesara_code_(Z))
|
|
|
|
|
|
def test_Symbol():
|
|
""" Test printing a Symbol to a aesara variable. """
|
|
xx = aesara_code_(x)
|
|
assert isinstance(xx, Variable)
|
|
assert xx.broadcastable == ()
|
|
assert xx.name == x.name
|
|
|
|
xx2 = aesara_code_(x, broadcastables={x: (False,)})
|
|
assert xx2.broadcastable == (False,)
|
|
assert xx2.name == x.name
|
|
|
|
def test_MatrixSymbol():
|
|
""" Test printing a MatrixSymbol to a aesara variable. """
|
|
XX = aesara_code_(X)
|
|
assert isinstance(XX, TensorVariable)
|
|
assert XX.broadcastable == (False, False)
|
|
|
|
@SKIP # TODO - this is currently not checked but should be implemented
|
|
def test_MatrixSymbol_wrong_dims():
|
|
""" Test MatrixSymbol with invalid broadcastable. """
|
|
bcs = [(), (False,), (True,), (True, False), (False, True,), (True, True)]
|
|
for bc in bcs:
|
|
with raises(ValueError):
|
|
aesara_code_(X, broadcastables={X: bc})
|
|
|
|
def test_AppliedUndef():
|
|
""" Test printing AppliedUndef instance, which works similarly to Symbol. """
|
|
ftt = aesara_code_(f_t)
|
|
assert isinstance(ftt, TensorVariable)
|
|
assert ftt.broadcastable == ()
|
|
assert ftt.name == 'f_t'
|
|
|
|
|
|
def test_add():
|
|
expr = x + y
|
|
comp = aesara_code_(expr)
|
|
assert comp.owner.op == aesara.tensor.add
|
|
|
|
def test_trig():
|
|
assert theq(aesara_code_(sy.sin(x)), aet.sin(xt))
|
|
assert theq(aesara_code_(sy.tan(x)), aet.tan(xt))
|
|
|
|
def test_many():
|
|
""" Test printing a complex expression with multiple symbols. """
|
|
expr = sy.exp(x**2 + sy.cos(y)) * sy.log(2*z)
|
|
comp = aesara_code_(expr)
|
|
expected = aet.exp(xt**2 + aet.cos(yt)) * aet.log(2*zt)
|
|
assert theq(comp, expected)
|
|
|
|
|
|
def test_dtype():
|
|
""" Test specifying specific data types through the dtype argument. """
|
|
for dtype in ['float32', 'float64', 'int8', 'int16', 'int32', 'int64']:
|
|
assert aesara_code_(x, dtypes={x: dtype}).type.dtype == dtype
|
|
|
|
# "floatX" type
|
|
assert aesara_code_(x, dtypes={x: 'floatX'}).type.dtype in ('float32', 'float64')
|
|
|
|
# Type promotion
|
|
assert aesara_code_(x + 1, dtypes={x: 'float32'}).type.dtype == 'float32'
|
|
assert aesara_code_(x + y, dtypes={x: 'float64', y: 'float32'}).type.dtype == 'float64'
|
|
|
|
|
|
def test_broadcastables():
|
|
""" Test the "broadcastables" argument when printing symbol-like objects. """
|
|
|
|
# No restrictions on shape
|
|
for s in [x, f_t]:
|
|
for bc in [(), (False,), (True,), (False, False), (True, False)]:
|
|
assert aesara_code_(s, broadcastables={s: bc}).broadcastable == bc
|
|
|
|
# TODO - matrix broadcasting?
|
|
|
|
def test_broadcasting():
|
|
""" Test "broadcastable" attribute after applying element-wise binary op. """
|
|
|
|
expr = x + y
|
|
|
|
cases = [
|
|
[(), (), ()],
|
|
[(False,), (False,), (False,)],
|
|
[(True,), (False,), (False,)],
|
|
[(False, True), (False, False), (False, False)],
|
|
[(True, False), (False, False), (False, False)],
|
|
]
|
|
|
|
for bc1, bc2, bc3 in cases:
|
|
comp = aesara_code_(expr, broadcastables={x: bc1, y: bc2})
|
|
assert comp.broadcastable == bc3
|
|
|
|
|
|
def test_MatMul():
|
|
expr = X*Y*Z
|
|
expr_t = aesara_code_(expr)
|
|
assert isinstance(expr_t.owner.op, Dot)
|
|
assert theq(expr_t, Xt.dot(Yt).dot(Zt))
|
|
|
|
def test_Transpose():
|
|
assert isinstance(aesara_code_(X.T).owner.op, DimShuffle)
|
|
|
|
def test_MatAdd():
|
|
expr = X+Y+Z
|
|
assert isinstance(aesara_code_(expr).owner.op, Elemwise)
|
|
|
|
|
|
def test_Rationals():
|
|
assert theq(aesara_code_(sy.Integer(2) / 3), true_divide(2, 3))
|
|
assert theq(aesara_code_(S.Half), true_divide(1, 2))
|
|
|
|
def test_Integers():
|
|
assert aesara_code_(sy.Integer(3)) == 3
|
|
|
|
def test_factorial():
|
|
n = sy.Symbol('n')
|
|
assert aesara_code_(sy.factorial(n))
|
|
|
|
def test_Derivative():
|
|
with ignore_warnings(UserWarning):
|
|
simp = lambda expr: aesara_simplify(fgraph_of(expr))
|
|
assert theq(simp(aesara_code_(sy.Derivative(sy.sin(x), x, evaluate=False))),
|
|
simp(aesara.grad(aet.sin(xt), xt)))
|
|
|
|
|
|
def test_aesara_function_simple():
|
|
""" Test aesara_function() with single output. """
|
|
f = aesara_function_([x, y], [x+y])
|
|
assert f(2, 3) == 5
|
|
|
|
def test_aesara_function_multi():
|
|
""" Test aesara_function() with multiple outputs. """
|
|
f = aesara_function_([x, y], [x+y, x-y])
|
|
o1, o2 = f(2, 3)
|
|
assert o1 == 5
|
|
assert o2 == -1
|
|
|
|
def test_aesara_function_numpy():
|
|
""" Test aesara_function() vs Numpy implementation. """
|
|
f = aesara_function_([x, y], [x+y], dim=1,
|
|
dtypes={x: 'float64', y: 'float64'})
|
|
assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9
|
|
|
|
f = aesara_function_([x, y], [x+y], dtypes={x: 'float64', y: 'float64'},
|
|
dim=1)
|
|
xx = np.arange(3).astype('float64')
|
|
yy = 2*np.arange(3).astype('float64')
|
|
assert np.linalg.norm(f(xx, yy) - 3*np.arange(3)) < 1e-9
|
|
|
|
|
|
def test_aesara_function_matrix():
|
|
m = sy.Matrix([[x, y], [z, x + y + z]])
|
|
expected = np.array([[1.0, 2.0], [3.0, 1.0 + 2.0 + 3.0]])
|
|
f = aesara_function_([x, y, z], [m])
|
|
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
|
|
f = aesara_function_([x, y, z], [m], scalar=True)
|
|
np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected)
|
|
f = aesara_function_([x, y, z], [m, m])
|
|
assert isinstance(f(1.0, 2.0, 3.0), type([]))
|
|
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[0], expected)
|
|
np.testing.assert_allclose(f(1.0, 2.0, 3.0)[1], expected)
|
|
|
|
def test_dim_handling():
|
|
assert dim_handling([x], dim=2) == {x: (False, False)}
|
|
assert dim_handling([x, y], dims={x: 1, y: 2}) == {x: (False, True),
|
|
y: (False, False)}
|
|
assert dim_handling([x], broadcastables={x: (False,)}) == {x: (False,)}
|
|
|
|
def test_aesara_function_kwargs():
|
|
"""
|
|
Test passing additional kwargs from aesara_function() to aesara.function().
|
|
"""
|
|
import numpy as np
|
|
f = aesara_function_([x, y, z], [x+y], dim=1, on_unused_input='ignore',
|
|
dtypes={x: 'float64', y: 'float64', z: 'float64'})
|
|
assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) - np.asarray([4, 6])) < 1e-9
|
|
|
|
f = aesara_function_([x, y, z], [x+y],
|
|
dtypes={x: 'float64', y: 'float64', z: 'float64'},
|
|
dim=1, on_unused_input='ignore')
|
|
xx = np.arange(3).astype('float64')
|
|
yy = 2*np.arange(3).astype('float64')
|
|
zz = 2*np.arange(3).astype('float64')
|
|
assert np.linalg.norm(f(xx, yy, zz) - 3*np.arange(3)) < 1e-9
|
|
|
|
def test_aesara_function_scalar():
|
|
""" Test the "scalar" argument to aesara_function(). """
|
|
from aesara.compile.function.types import Function
|
|
|
|
args = [
|
|
([x, y], [x + y], None, [0]), # Single 0d output
|
|
([X, Y], [X + Y], None, [2]), # Single 2d output
|
|
([x, y], [x + y], {x: 0, y: 1}, [1]), # Single 1d output
|
|
([x, y], [x + y, x - y], None, [0, 0]), # Two 0d outputs
|
|
([x, y, X, Y], [x + y, X + Y], None, [0, 2]), # One 0d output, one 2d
|
|
]
|
|
|
|
# Create and test functions with and without the scalar setting
|
|
for inputs, outputs, in_dims, out_dims in args:
|
|
for scalar in [False, True]:
|
|
|
|
f = aesara_function_(inputs, outputs, dims=in_dims, scalar=scalar)
|
|
|
|
# Check the aesara_function attribute is set whether wrapped or not
|
|
assert isinstance(f.aesara_function, Function)
|
|
|
|
# Feed in inputs of the appropriate size and get outputs
|
|
in_values = [
|
|
np.ones([1 if bc else 5 for bc in i.type.broadcastable])
|
|
for i in f.aesara_function.input_storage
|
|
]
|
|
out_values = f(*in_values)
|
|
if not isinstance(out_values, list):
|
|
out_values = [out_values]
|
|
|
|
# Check output types and shapes
|
|
assert len(out_dims) == len(out_values)
|
|
for d, value in zip(out_dims, out_values):
|
|
|
|
if scalar and d == 0:
|
|
# Should have been converted to a scalar value
|
|
assert isinstance(value, np.number)
|
|
|
|
else:
|
|
# Otherwise should be an array
|
|
assert isinstance(value, np.ndarray)
|
|
assert value.ndim == d
|
|
|
|
def test_aesara_function_bad_kwarg():
|
|
"""
|
|
Passing an unknown keyword argument to aesara_function() should raise an
|
|
exception.
|
|
"""
|
|
raises(Exception, lambda : aesara_function_([x], [x+1], foobar=3))
|
|
|
|
|
|
def test_slice():
|
|
assert aesara_code_(slice(1, 2, 3)) == slice(1, 2, 3)
|
|
|
|
def theq_slice(s1, s2):
|
|
for attr in ['start', 'stop', 'step']:
|
|
a1 = getattr(s1, attr)
|
|
a2 = getattr(s2, attr)
|
|
if a1 is None or a2 is None:
|
|
if not (a1 is None or a2 is None):
|
|
return False
|
|
elif not theq(a1, a2):
|
|
return False
|
|
return True
|
|
|
|
dtypes = {x: 'int32', y: 'int32'}
|
|
assert theq_slice(aesara_code_(slice(x, y), dtypes=dtypes), slice(xt, yt))
|
|
assert theq_slice(aesara_code_(slice(1, x, 3), dtypes=dtypes), slice(1, xt, 3))
|
|
|
|
def test_MatrixSlice():
|
|
cache = {}
|
|
|
|
n = sy.Symbol('n', integer=True)
|
|
X = sy.MatrixSymbol('X', n, n)
|
|
|
|
Y = X[1:2:3, 4:5:6]
|
|
Yt = aesara_code_(Y, cache=cache)
|
|
|
|
s = Scalar('int64')
|
|
assert tuple(Yt.owner.op.idx_list) == (slice(s, s, s), slice(s, s, s))
|
|
assert Yt.owner.inputs[0] == aesara_code_(X, cache=cache)
|
|
# == doesn't work in Aesara like it does in SymPy. You have to use
|
|
# equals.
|
|
assert all(Yt.owner.inputs[i].data == i for i in range(1, 7))
|
|
|
|
k = sy.Symbol('k')
|
|
aesara_code_(k, dtypes={k: 'int32'})
|
|
start, stop, step = 4, k, 2
|
|
Y = X[start:stop:step]
|
|
Yt = aesara_code_(Y, dtypes={n: 'int32', k: 'int32'})
|
|
# assert Yt.owner.op.idx_list[0].stop == kt
|
|
|
|
def test_BlockMatrix():
|
|
n = sy.Symbol('n', integer=True)
|
|
A, B, C, D = [sy.MatrixSymbol(name, n, n) for name in 'ABCD']
|
|
At, Bt, Ct, Dt = map(aesara_code_, (A, B, C, D))
|
|
Block = sy.BlockMatrix([[A, B], [C, D]])
|
|
Blockt = aesara_code_(Block)
|
|
solutions = [aet.join(0, aet.join(1, At, Bt), aet.join(1, Ct, Dt)),
|
|
aet.join(1, aet.join(0, At, Ct), aet.join(0, Bt, Dt))]
|
|
assert any(theq(Blockt, solution) for solution in solutions)
|
|
|
|
@SKIP
|
|
def test_BlockMatrix_Inverse_execution():
|
|
k, n = 2, 4
|
|
dtype = 'float32'
|
|
A = sy.MatrixSymbol('A', n, k)
|
|
B = sy.MatrixSymbol('B', n, n)
|
|
inputs = A, B
|
|
output = B.I*A
|
|
|
|
cutsizes = {A: [(n//2, n//2), (k//2, k//2)],
|
|
B: [(n//2, n//2), (n//2, n//2)]}
|
|
cutinputs = [sy.blockcut(i, *cutsizes[i]) for i in inputs]
|
|
cutoutput = output.subs(dict(zip(inputs, cutinputs)))
|
|
|
|
dtypes = dict(zip(inputs, [dtype]*len(inputs)))
|
|
f = aesara_function_(inputs, [output], dtypes=dtypes, cache={})
|
|
fblocked = aesara_function_(inputs, [sy.block_collapse(cutoutput)],
|
|
dtypes=dtypes, cache={})
|
|
|
|
ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs]
|
|
ninputs = [np.arange(n*k).reshape(A.shape).astype(dtype),
|
|
np.eye(n).astype(dtype)]
|
|
ninputs[1] += np.ones(B.shape)*1e-5
|
|
|
|
assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5)
|
|
|
|
def test_DenseMatrix():
|
|
from aesara.tensor.basic import Join
|
|
|
|
t = sy.Symbol('theta')
|
|
for MatrixType in [sy.Matrix, sy.ImmutableMatrix]:
|
|
X = MatrixType([[sy.cos(t), -sy.sin(t)], [sy.sin(t), sy.cos(t)]])
|
|
tX = aesara_code_(X)
|
|
assert isinstance(tX, TensorVariable)
|
|
assert isinstance(tX.owner.op, Join)
|
|
|
|
|
|
def test_cache_basic():
|
|
""" Test single symbol-like objects are cached when printed by themselves. """
|
|
|
|
# Pairs of objects which should be considered equivalent with respect to caching
|
|
pairs = [
|
|
(x, sy.Symbol('x')),
|
|
(X, sy.MatrixSymbol('X', *X.shape)),
|
|
(f_t, sy.Function('f')(sy.Symbol('t'))),
|
|
]
|
|
|
|
for s1, s2 in pairs:
|
|
cache = {}
|
|
st = aesara_code_(s1, cache=cache)
|
|
|
|
# Test hit with same instance
|
|
assert aesara_code_(s1, cache=cache) is st
|
|
|
|
# Test miss with same instance but new cache
|
|
assert aesara_code_(s1, cache={}) is not st
|
|
|
|
# Test hit with different but equivalent instance
|
|
assert aesara_code_(s2, cache=cache) is st
|
|
|
|
def test_global_cache():
|
|
""" Test use of the global cache. """
|
|
from sympy.printing.aesaracode import global_cache
|
|
|
|
backup = dict(global_cache)
|
|
try:
|
|
# Temporarily empty global cache
|
|
global_cache.clear()
|
|
|
|
for s in [x, X, f_t]:
|
|
st = aesara_code(s)
|
|
assert aesara_code(s) is st
|
|
|
|
finally:
|
|
# Restore global cache
|
|
global_cache.update(backup)
|
|
|
|
def test_cache_types_distinct():
|
|
"""
|
|
Test that symbol-like objects of different types (Symbol, MatrixSymbol,
|
|
AppliedUndef) are distinguished by the cache even if they have the same
|
|
name.
|
|
"""
|
|
symbols = [sy.Symbol('f_t'), sy.MatrixSymbol('f_t', 4, 4), f_t]
|
|
|
|
cache = {} # Single shared cache
|
|
printed = {}
|
|
|
|
for s in symbols:
|
|
st = aesara_code_(s, cache=cache)
|
|
assert st not in printed.values()
|
|
printed[s] = st
|
|
|
|
# Check all printed objects are distinct
|
|
assert len(set(map(id, printed.values()))) == len(symbols)
|
|
|
|
# Check retrieving
|
|
for s, st in printed.items():
|
|
assert aesara_code(s, cache=cache) is st
|
|
|
|
def test_symbols_are_created_once():
|
|
"""
|
|
Test that a symbol is cached and reused when it appears in an expression
|
|
more than once.
|
|
"""
|
|
expr = sy.Add(x, x, evaluate=False)
|
|
comp = aesara_code_(expr)
|
|
|
|
assert theq(comp, xt + xt)
|
|
assert not theq(comp, xt + aesara_code_(x))
|
|
|
|
def test_cache_complex():
|
|
"""
|
|
Test caching on a complicated expression with multiple symbols appearing
|
|
multiple times.
|
|
"""
|
|
expr = x ** 2 + (y - sy.exp(x)) * sy.sin(z - x * y)
|
|
symbol_names = {s.name for s in expr.free_symbols}
|
|
expr_t = aesara_code_(expr)
|
|
|
|
# Iterate through variables in the Aesara computational graph that the
|
|
# printed expression depends on
|
|
seen = set()
|
|
for v in aesara.graph.basic.ancestors([expr_t]):
|
|
# Owner-less, non-constant variables should be our symbols
|
|
if v.owner is None and not isinstance(v, aesara.graph.basic.Constant):
|
|
# Check it corresponds to a symbol and appears only once
|
|
assert v.name in symbol_names
|
|
assert v.name not in seen
|
|
seen.add(v.name)
|
|
|
|
# Check all were present
|
|
assert seen == symbol_names
|
|
|
|
|
|
def test_Piecewise():
|
|
# A piecewise linear
|
|
expr = sy.Piecewise((0, x<0), (x, x<2), (1, True)) # ___/III
|
|
result = aesara_code_(expr)
|
|
assert result.owner.op == aet.switch
|
|
|
|
expected = aet.switch(xt<0, 0, aet.switch(xt<2, xt, 1))
|
|
assert theq(result, expected)
|
|
|
|
expr = sy.Piecewise((x, x < 0))
|
|
result = aesara_code_(expr)
|
|
expected = aet.switch(xt < 0, xt, np.nan)
|
|
assert theq(result, expected)
|
|
|
|
expr = sy.Piecewise((0, sy.And(x>0, x<2)), \
|
|
(x, sy.Or(x>2, x<0)))
|
|
result = aesara_code_(expr)
|
|
expected = aet.switch(aet.and_(xt>0,xt<2), 0, \
|
|
aet.switch(aet.or_(xt>2, xt<0), xt, np.nan))
|
|
assert theq(result, expected)
|
|
|
|
|
|
def test_Relationals():
|
|
assert theq(aesara_code_(sy.Eq(x, y)), aet.eq(xt, yt))
|
|
# assert theq(aesara_code_(sy.Ne(x, y)), aet.neq(xt, yt)) # TODO - implement
|
|
assert theq(aesara_code_(x > y), xt > yt)
|
|
assert theq(aesara_code_(x < y), xt < yt)
|
|
assert theq(aesara_code_(x >= y), xt >= yt)
|
|
assert theq(aesara_code_(x <= y), xt <= yt)
|
|
|
|
|
|
def test_complexfunctions():
|
|
dtypes = {x:'complex128', y:'complex128'}
|
|
xt, yt = aesara_code(x, dtypes=dtypes), aesara_code(y, dtypes=dtypes)
|
|
from sympy.functions.elementary.complexes import conjugate
|
|
from aesara.tensor import as_tensor_variable as atv
|
|
from aesara.tensor import complex as cplx
|
|
assert theq(aesara_code(y*conjugate(x), dtypes=dtypes), yt*(xt.conj()))
|
|
assert theq(aesara_code((1+2j)*x), xt*(atv(1.0)+atv(2.0)*cplx(0,1)))
|
|
|
|
|
|
def test_constantfunctions():
|
|
tf = aesara_function([],[1+1j])
|
|
assert(tf()==1+1j)
|