You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
389 lines
14 KiB
389 lines
14 KiB
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
|
|
Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
|
|
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
|
|
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos
|
|
from sympy.testing.pytest import raises
|
|
from sympy.utilities.lambdify import implemented_function
|
|
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
|
|
HadamardProduct, SparseMatrix)
|
|
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
|
|
besselk, hankel1, hankel2, airyai,
|
|
airybi, airyaiprime, airybiprime)
|
|
from sympy.testing.pytest import XFAIL
|
|
|
|
from sympy.printing.julia import julia_code
|
|
|
|
x, y, z = symbols('x,y,z')
|
|
|
|
|
|
def test_Integer():
|
|
assert julia_code(Integer(67)) == "67"
|
|
assert julia_code(Integer(-1)) == "-1"
|
|
|
|
|
|
def test_Rational():
|
|
assert julia_code(Rational(3, 7)) == "3 // 7"
|
|
assert julia_code(Rational(18, 9)) == "2"
|
|
assert julia_code(Rational(3, -7)) == "-3 // 7"
|
|
assert julia_code(Rational(-3, -7)) == "3 // 7"
|
|
assert julia_code(x + Rational(3, 7)) == "x + 3 // 7"
|
|
assert julia_code(Rational(3, 7)*x) == "(3 // 7) * x"
|
|
|
|
|
|
def test_Relational():
|
|
assert julia_code(Eq(x, y)) == "x == y"
|
|
assert julia_code(Ne(x, y)) == "x != y"
|
|
assert julia_code(Le(x, y)) == "x <= y"
|
|
assert julia_code(Lt(x, y)) == "x < y"
|
|
assert julia_code(Gt(x, y)) == "x > y"
|
|
assert julia_code(Ge(x, y)) == "x >= y"
|
|
|
|
|
|
def test_Function():
|
|
assert julia_code(sin(x) ** cos(x)) == "sin(x) .^ cos(x)"
|
|
assert julia_code(abs(x)) == "abs(x)"
|
|
assert julia_code(ceiling(x)) == "ceil(x)"
|
|
|
|
|
|
def test_Pow():
|
|
assert julia_code(x**3) == "x .^ 3"
|
|
assert julia_code(x**(y**3)) == "x .^ (y .^ 3)"
|
|
assert julia_code(x**Rational(2, 3)) == 'x .^ (2 // 3)'
|
|
g = implemented_function('g', Lambda(x, 2*x))
|
|
assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
|
"(3.5 * 2 * x) .^ (-x + y .^ x) ./ (x .^ 2 + y)"
|
|
# For issue 14160
|
|
assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
|
|
evaluate=False)) == '-2 * x ./ (y .* y)'
|
|
|
|
|
|
def test_basic_ops():
|
|
assert julia_code(x*y) == "x .* y"
|
|
assert julia_code(x + y) == "x + y"
|
|
assert julia_code(x - y) == "x - y"
|
|
assert julia_code(-x) == "-x"
|
|
|
|
|
|
def test_1_over_x_and_sqrt():
|
|
# 1.0 and 0.5 would do something different in regular StrPrinter,
|
|
# but these are exact in IEEE floating point so no different here.
|
|
assert julia_code(1/x) == '1 ./ x'
|
|
assert julia_code(x**-1) == julia_code(x**-1.0) == '1 ./ x'
|
|
assert julia_code(1/sqrt(x)) == '1 ./ sqrt(x)'
|
|
assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1 ./ sqrt(x)'
|
|
assert julia_code(sqrt(x)) == 'sqrt(x)'
|
|
assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)'
|
|
assert julia_code(1/pi) == '1 / pi'
|
|
assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1 / pi'
|
|
assert julia_code(pi**-0.5) == '1 / sqrt(pi)'
|
|
|
|
|
|
def test_mix_number_mult_symbols():
|
|
assert julia_code(3*x) == "3 * x"
|
|
assert julia_code(pi*x) == "pi * x"
|
|
assert julia_code(3/x) == "3 ./ x"
|
|
assert julia_code(pi/x) == "pi ./ x"
|
|
assert julia_code(x/3) == "x / 3"
|
|
assert julia_code(x/pi) == "x / pi"
|
|
assert julia_code(x*y) == "x .* y"
|
|
assert julia_code(3*x*y) == "3 * x .* y"
|
|
assert julia_code(3*pi*x*y) == "3 * pi * x .* y"
|
|
assert julia_code(x/y) == "x ./ y"
|
|
assert julia_code(3*x/y) == "3 * x ./ y"
|
|
assert julia_code(x*y/z) == "x .* y ./ z"
|
|
assert julia_code(x/y*z) == "x .* z ./ y"
|
|
assert julia_code(1/x/y) == "1 ./ (x .* y)"
|
|
assert julia_code(2*pi*x/y/z) == "2 * pi * x ./ (y .* z)"
|
|
assert julia_code(3*pi/x) == "3 * pi ./ x"
|
|
assert julia_code(S(3)/5) == "3 // 5"
|
|
assert julia_code(S(3)/5*x) == "(3 // 5) * x"
|
|
assert julia_code(x/y/z) == "x ./ (y .* z)"
|
|
assert julia_code((x+y)/z) == "(x + y) ./ z"
|
|
assert julia_code((x+y)/(z+x)) == "(x + y) ./ (x + z)"
|
|
assert julia_code((x+y)/EulerGamma) == "(x + y) / eulergamma"
|
|
assert julia_code(x/3/pi) == "x / (3 * pi)"
|
|
assert julia_code(S(3)/5*x*y/pi) == "(3 // 5) * x .* y / pi"
|
|
|
|
|
|
def test_mix_number_pow_symbols():
|
|
assert julia_code(pi**3) == 'pi ^ 3'
|
|
assert julia_code(x**2) == 'x .^ 2'
|
|
assert julia_code(x**(pi**3)) == 'x .^ (pi ^ 3)'
|
|
assert julia_code(x**y) == 'x .^ y'
|
|
assert julia_code(x**(y**z)) == 'x .^ (y .^ z)'
|
|
assert julia_code((x**y)**z) == '(x .^ y) .^ z'
|
|
|
|
|
|
def test_imag():
|
|
I = S('I')
|
|
assert julia_code(I) == "im"
|
|
assert julia_code(5*I) == "5im"
|
|
assert julia_code((S(3)/2)*I) == "(3 // 2) * im"
|
|
assert julia_code(3+4*I) == "3 + 4im"
|
|
|
|
|
|
def test_constants():
|
|
assert julia_code(pi) == "pi"
|
|
assert julia_code(oo) == "Inf"
|
|
assert julia_code(-oo) == "-Inf"
|
|
assert julia_code(S.NegativeInfinity) == "-Inf"
|
|
assert julia_code(S.NaN) == "NaN"
|
|
assert julia_code(S.Exp1) == "e"
|
|
assert julia_code(exp(1)) == "e"
|
|
|
|
|
|
def test_constants_other():
|
|
assert julia_code(2*GoldenRatio) == "2 * golden"
|
|
assert julia_code(2*Catalan) == "2 * catalan"
|
|
assert julia_code(2*EulerGamma) == "2 * eulergamma"
|
|
|
|
|
|
def test_boolean():
|
|
assert julia_code(x & y) == "x && y"
|
|
assert julia_code(x | y) == "x || y"
|
|
assert julia_code(~x) == "!x"
|
|
assert julia_code(x & y & z) == "x && y && z"
|
|
assert julia_code(x | y | z) == "x || y || z"
|
|
assert julia_code((x & y) | z) == "z || x && y"
|
|
assert julia_code((x | y) & z) == "z && (x || y)"
|
|
|
|
|
|
def test_Matrices():
|
|
assert julia_code(Matrix(1, 1, [10])) == "[10]"
|
|
A = Matrix([[1, sin(x/2), abs(x)],
|
|
[0, 1, pi],
|
|
[0, exp(1), ceiling(x)]]);
|
|
expected = ("[1 sin(x / 2) abs(x);\n"
|
|
"0 1 pi;\n"
|
|
"0 e ceil(x)]")
|
|
assert julia_code(A) == expected
|
|
# row and columns
|
|
assert julia_code(A[:,0]) == "[1, 0, 0]"
|
|
assert julia_code(A[0,:]) == "[1 sin(x / 2) abs(x)]"
|
|
# empty matrices
|
|
assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)'
|
|
assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)'
|
|
# annoying to read but correct
|
|
assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
|
|
|
|
|
|
def test_vector_entries_hadamard():
|
|
# For a row or column, user might to use the other dimension
|
|
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
|
|
assert julia_code(A) == "[1 sin(2 ./ x) (3 // 5) * pi ./ x]"
|
|
assert julia_code(A.T) == "[1, sin(2 ./ x), (3 // 5) * pi ./ x]"
|
|
|
|
|
|
@XFAIL
|
|
def test_Matrices_entries_not_hadamard():
|
|
# For Matrix with col >= 2, row >= 2, they need to be scalars
|
|
# FIXME: is it worth worrying about this? Its not wrong, just
|
|
# leave it user's responsibility to put scalar data for x.
|
|
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
|
|
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
|
|
"1 2 x*y]") # <- we give x.*y
|
|
assert julia_code(A) == expected
|
|
|
|
|
|
def test_MatrixSymbol():
|
|
n = Symbol('n', integer=True)
|
|
A = MatrixSymbol('A', n, n)
|
|
B = MatrixSymbol('B', n, n)
|
|
assert julia_code(A*B) == "A * B"
|
|
assert julia_code(B*A) == "B * A"
|
|
assert julia_code(2*A*B) == "2 * A * B"
|
|
assert julia_code(B*2*A) == "2 * B * A"
|
|
assert julia_code(A*(B + 3*Identity(n))) == "A * (3 * eye(n) + B)"
|
|
assert julia_code(A**(x**2)) == "A ^ (x .^ 2)"
|
|
assert julia_code(A**3) == "A ^ 3"
|
|
assert julia_code(A**S.Half) == "A ^ (1 // 2)"
|
|
|
|
|
|
def test_special_matrices():
|
|
assert julia_code(6*Identity(3)) == "6 * eye(3)"
|
|
|
|
|
|
def test_containers():
|
|
assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
|
|
"Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]"
|
|
assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))"
|
|
assert julia_code([1]) == "Any[1]"
|
|
assert julia_code((1,)) == "(1,)"
|
|
assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)"
|
|
assert julia_code((1, x*y, (3, x**2))) == "(1, x .* y, (3, x .^ 2))"
|
|
# scalar, matrix, empty matrix and empty list
|
|
assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"
|
|
|
|
|
|
def test_julia_noninline():
|
|
source = julia_code((x+y)/Catalan, assign_to='me', inline=False)
|
|
expected = (
|
|
"const Catalan = %s\n"
|
|
"me = (x + y) / Catalan"
|
|
) % Catalan.evalf(17)
|
|
assert source == expected
|
|
|
|
|
|
def test_julia_piecewise():
|
|
expr = Piecewise((x, x < 1), (x**2, True))
|
|
assert julia_code(expr) == "((x < 1) ? (x) : (x .^ 2))"
|
|
assert julia_code(expr, assign_to="r") == (
|
|
"r = ((x < 1) ? (x) : (x .^ 2))")
|
|
assert julia_code(expr, assign_to="r", inline=False) == (
|
|
"if (x < 1)\n"
|
|
" r = x\n"
|
|
"else\n"
|
|
" r = x .^ 2\n"
|
|
"end")
|
|
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
|
|
expected = ("((x < 1) ? (x .^ 2) :\n"
|
|
"(x < 2) ? (x .^ 3) :\n"
|
|
"(x < 3) ? (x .^ 4) : (x .^ 5))")
|
|
assert julia_code(expr) == expected
|
|
assert julia_code(expr, assign_to="r") == "r = " + expected
|
|
assert julia_code(expr, assign_to="r", inline=False) == (
|
|
"if (x < 1)\n"
|
|
" r = x .^ 2\n"
|
|
"elseif (x < 2)\n"
|
|
" r = x .^ 3\n"
|
|
"elseif (x < 3)\n"
|
|
" r = x .^ 4\n"
|
|
"else\n"
|
|
" r = x .^ 5\n"
|
|
"end")
|
|
# Check that Piecewise without a True (default) condition error
|
|
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
|
raises(ValueError, lambda: julia_code(expr))
|
|
|
|
|
|
def test_julia_piecewise_times_const():
|
|
pw = Piecewise((x, x < 1), (x**2, True))
|
|
assert julia_code(2*pw) == "2 * ((x < 1) ? (x) : (x .^ 2))"
|
|
assert julia_code(pw/x) == "((x < 1) ? (x) : (x .^ 2)) ./ x"
|
|
assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x .^ 2)) ./ (x .* y)"
|
|
assert julia_code(pw/3) == "((x < 1) ? (x) : (x .^ 2)) / 3"
|
|
|
|
|
|
def test_julia_matrix_assign_to():
|
|
A = Matrix([[1, 2, 3]])
|
|
assert julia_code(A, assign_to='a') == "a = [1 2 3]"
|
|
A = Matrix([[1, 2], [3, 4]])
|
|
assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]"
|
|
|
|
|
|
def test_julia_matrix_assign_to_more():
|
|
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
|
|
A = Matrix([[1, 2, 3]])
|
|
B = MatrixSymbol('B', 1, 3)
|
|
C = MatrixSymbol('C', 2, 3)
|
|
assert julia_code(A, assign_to=B) == "B = [1 2 3]"
|
|
raises(ValueError, lambda: julia_code(A, assign_to=x))
|
|
raises(ValueError, lambda: julia_code(A, assign_to=C))
|
|
|
|
|
|
def test_julia_matrix_1x1():
|
|
A = Matrix([[3]])
|
|
B = MatrixSymbol('B', 1, 1)
|
|
C = MatrixSymbol('C', 1, 2)
|
|
assert julia_code(A, assign_to=B) == "B = [3]"
|
|
# FIXME?
|
|
#assert julia_code(A, assign_to=x) == "x = [3]"
|
|
raises(ValueError, lambda: julia_code(A, assign_to=C))
|
|
|
|
|
|
def test_julia_matrix_elements():
|
|
A = Matrix([[x, 2, x*y]])
|
|
assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x .^ 2 + x .* y + 2"
|
|
A = MatrixSymbol('AA', 1, 3)
|
|
assert julia_code(A) == "AA"
|
|
assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
|
|
"sin(AA[1,2]) + AA[1,1] .^ 2 + AA[1,3]"
|
|
assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
|
|
|
|
|
|
def test_julia_boolean():
|
|
assert julia_code(True) == "true"
|
|
assert julia_code(S.true) == "true"
|
|
assert julia_code(False) == "false"
|
|
assert julia_code(S.false) == "false"
|
|
|
|
|
|
def test_julia_not_supported():
|
|
assert julia_code(S.ComplexInfinity) == (
|
|
"# Not supported in Julia:\n"
|
|
"# ComplexInfinity\n"
|
|
"zoo"
|
|
)
|
|
f = Function('f')
|
|
assert julia_code(f(x).diff(x)) == (
|
|
"# Not supported in Julia:\n"
|
|
"# Derivative\n"
|
|
"Derivative(f(x), x)"
|
|
)
|
|
|
|
|
|
def test_trick_indent_with_end_else_words():
|
|
# words starting with "end" or "else" do not confuse the indenter
|
|
t1 = S('endless');
|
|
t2 = S('elsewhere');
|
|
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
|
|
assert julia_code(pw, inline=False) == (
|
|
"if (x < 0)\n"
|
|
" endless\n"
|
|
"elseif (x <= 1)\n"
|
|
" elsewhere\n"
|
|
"else\n"
|
|
" 1\n"
|
|
"end")
|
|
|
|
|
|
def test_haramard():
|
|
A = MatrixSymbol('A', 3, 3)
|
|
B = MatrixSymbol('B', 3, 3)
|
|
v = MatrixSymbol('v', 3, 1)
|
|
h = MatrixSymbol('h', 1, 3)
|
|
C = HadamardProduct(A, B)
|
|
assert julia_code(C) == "A .* B"
|
|
assert julia_code(C*v) == "(A .* B) * v"
|
|
assert julia_code(h*C*v) == "h * (A .* B) * v"
|
|
assert julia_code(C*A) == "(A .* B) * A"
|
|
# mixing Hadamard and scalar strange b/c we vectorize scalars
|
|
assert julia_code(C*x*y) == "(x .* y) * (A .* B)"
|
|
|
|
|
|
def test_sparse():
|
|
M = SparseMatrix(5, 6, {})
|
|
M[2, 2] = 10;
|
|
M[1, 2] = 20;
|
|
M[1, 3] = 22;
|
|
M[0, 3] = 30;
|
|
M[3, 0] = x*y;
|
|
assert julia_code(M) == (
|
|
"sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x .* y, 20, 10, 30, 22], 5, 6)"
|
|
)
|
|
|
|
|
|
def test_specfun():
|
|
n = Symbol('n')
|
|
for f in [besselj, bessely, besseli, besselk]:
|
|
assert julia_code(f(n, x)) == f.__name__ + '(n, x)'
|
|
for f in [airyai, airyaiprime, airybi, airybiprime]:
|
|
assert julia_code(f(x)) == f.__name__ + '(x)'
|
|
assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)'
|
|
assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)'
|
|
assert julia_code(jn(n, x)) == 'sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* besselj(n + 1 // 2, x) / 2'
|
|
assert julia_code(yn(n, x)) == 'sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* bessely(n + 1 // 2, x) / 2'
|
|
|
|
|
|
def test_MatrixElement_printing():
|
|
# test cases for issue #11821
|
|
A = MatrixSymbol("A", 1, 3)
|
|
B = MatrixSymbol("B", 1, 3)
|
|
C = MatrixSymbol("C", 1, 3)
|
|
|
|
assert(julia_code(A[0, 0]) == "A[1,1]")
|
|
assert(julia_code(3 * A[0, 0]) == "3 * A[1,1]")
|
|
|
|
F = C[0, 0].subs(C, A - B)
|
|
assert(julia_code(F) == "(A - B)[1,1]")
|