You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

257 lines
8.6 KiB

from sympy import permutedims
from sympy.core.numbers import Number
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.tensor.tensor import Tensor, TensExpr, TensAdd, TensMul
class PartialDerivative(TensExpr):
"""
Partial derivative for tensor expressions.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead
>>> from sympy.tensor.toperators import PartialDerivative
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> A = TensorHead("A", [L])
>>> B = TensorHead("B", [L])
>>> i, j, k = symbols("i j k")
>>> expr = PartialDerivative(A(i), A(j))
>>> expr
PartialDerivative(A(i), A(j))
The ``PartialDerivative`` object behaves like a tensorial expression:
>>> expr.get_indices()
[i, -j]
Notice that the deriving variables have opposite valence than the
printed one: ``A(j)`` is printed as covariant, but the index of the
derivative is actually contravariant, i.e. ``-j``.
Indices can be contracted:
>>> expr = PartialDerivative(A(i), A(i))
>>> expr
PartialDerivative(A(L_0), A(L_0))
>>> expr.get_indices()
[L_0, -L_0]
The method ``.get_indices()`` always returns all indices (even the
contracted ones). If only uncontracted indices are needed, call
``.get_free_indices()``:
>>> expr.get_free_indices()
[]
Nested partial derivatives are flattened:
>>> expr = PartialDerivative(PartialDerivative(A(i), A(j)), A(k))
>>> expr
PartialDerivative(A(i), A(j), A(k))
>>> expr.get_indices()
[i, -j, -k]
Replace a derivative with array values:
>>> from sympy.abc import x, y
>>> from sympy import sin, log
>>> compA = [sin(x), log(x)*y**3]
>>> compB = [x, y]
>>> expr = PartialDerivative(A(i), B(j))
>>> expr.replace_with_arrays({A(i): compA, B(i): compB})
[[cos(x), 0], [y**3/x, 3*y**2*log(x)]]
The returned array is indexed by `(i, -j)`.
Be careful that other SymPy modules put the indices of the deriving
variables before the indices of the derivand in the derivative result.
For example:
>>> expr.get_free_indices()
[i, -j]
>>> from sympy import Matrix, Array
>>> Matrix(compA).diff(Matrix(compB)).reshape(2, 2)
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
>>> Array(compA).diff(Array(compB))
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
These are the transpose of the result of ``PartialDerivative``,
as the matrix and the array modules put the index `-j` before `i` in the
derivative result. An array read with index order `(-j, i)` is indeed the
transpose of the same array read with index order `(i, -j)`. By specifying
the index order to ``.replace_with_arrays`` one can get a compatible
expression:
>>> expr.replace_with_arrays({A(i): compA, B(i): compB}, [-j, i])
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
"""
def __new__(cls, expr, *variables):
# Flatten:
if isinstance(expr, PartialDerivative):
variables = expr.variables + variables
expr = expr.expr
args, indices, free, dum = cls._contract_indices_for_derivative(
S(expr), variables)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._free = free
obj._dum = dum
return obj
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
@classmethod
def _contract_indices_for_derivative(cls, expr, variables):
variables_opposite_valence = []
for i in variables:
if isinstance(i, Tensor):
i_free_indices = i.get_free_indices()
variables_opposite_valence.append(
i.xreplace({k: -k for k in i_free_indices}))
elif isinstance(i, Symbol):
variables_opposite_valence.append(i)
args, indices, free, dum = TensMul._tensMul_contract_indices(
[expr] + variables_opposite_valence, replace_indices=True)
for i in range(1, len(args)):
args_i = args[i]
if isinstance(args_i, Tensor):
i_indices = args[i].get_free_indices()
args[i] = args[i].xreplace({k: -k for k in i_indices})
return args, indices, free, dum
def doit(self, **hints):
args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables)
obj = self.func(*args)
obj._indices = indices
obj._free = free
obj._dum = dum
return obj
def _expand_partial_derivative(self):
args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables)
obj = self.func(*args)
obj._indices = indices
obj._free = free
obj._dum = dum
result = obj
if not args[0].free_symbols:
return S.Zero
elif isinstance(obj.expr, TensAdd):
# take care of sums of multi PDs
result = obj.expr.func(*[
self.func(a, *obj.variables)._expand_partial_derivative()
for a in result.expr.args])
elif isinstance(obj.expr, TensMul):
# take care of products of multi PDs
if len(obj.variables) == 1:
# derivative with respect to single variable
terms = []
mulargs = list(obj.expr.args)
for ind in range(len(mulargs)):
if not isinstance(sympify(mulargs[ind]), Number):
# a number coefficient is not considered for
# expansion of PartialDerivative
d = self.func(mulargs[ind], *obj.variables)._expand_partial_derivative()
terms.append(TensMul(*(mulargs[:ind]
+ [d]
+ mulargs[(ind + 1):])))
result = TensAdd.fromiter(terms)
else:
# derivative with respect to multiple variables
# decompose:
# partial(expr, (u, v))
# = partial(partial(expr, u).doit(), v).doit()
result = obj.expr # init with expr
for v in obj.variables:
result = self.func(result, v)._expand_partial_derivative()
# then throw PD on it
return result
def _perform_derivative(self):
result = self.expr
for v in self.variables:
if isinstance(result, TensExpr):
result = result._eval_partial_derivative(v)
else:
if v._diff_wrt:
result = result._eval_derivative(v)
else:
result = S.Zero
return result
def get_indices(self):
return self._indices
def get_free_indices(self):
free = sorted(self._free, key=lambda x: x[1])
return [i[0] for i in free]
def _replace_indices(self, repl):
expr = self.expr.xreplace(repl)
mirrored = {-k: -v for k, v in repl.items()}
variables = [i.xreplace(mirrored) for i in self.variables]
return self.func(expr, *variables)
@property
def expr(self):
return self.args[0]
@property
def variables(self):
return self.args[1:]
def _extract_data(self, replacement_dict):
from .array import derive_by_array, tensorcontraction
indices, array = self.expr._extract_data(replacement_dict)
for variable in self.variables:
var_indices, var_array = variable._extract_data(replacement_dict)
var_indices = [-i for i in var_indices]
coeff_array, var_array = zip(*[i.as_coeff_Mul() for i in var_array])
dim_before = len(array.shape)
array = derive_by_array(array, var_array)
dim_after = len(array.shape)
dim_increase = dim_after - dim_before
array = permutedims(array, [i + dim_increase for i in range(dim_before)] + list(range(dim_increase)))
array = array.as_mutable()
varindex = var_indices[0]
# Remove coefficients of base vector:
coeff_index = [0] + [slice(None) for i in range(len(indices))]
for i, coeff in enumerate(coeff_array):
coeff_index[0] = i
array[tuple(coeff_index)] /= coeff
if -varindex in indices:
pos = indices.index(-varindex)
array = tensorcontraction(array, (0, pos+1))
indices.pop(pos)
else:
indices.append(varindex)
return indices, array