You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

399 lines
15 KiB

import collections
import dataclasses
import re
import sys
import types
from typing import Counter, Dict, List, Optional
import torch.nn
from . import utils
from .bytecode_transformation import (
create_call_function,
create_dup_top,
create_instruction,
create_load_global,
create_rot_n,
Instruction,
)
from .exc import unimplemented
from .source import AttrSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import VariableTracker
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
NumpyNdarrayVariable,
SymNodeVariable,
TensorVariable,
UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable
@dataclasses.dataclass
class GraphOutputEntry:
index: int
variable: VariableTracker
class PyCodegen:
"""
Helper class uses for constructing Python bytecode
"""
def __init__(
self,
tx=None,
root: Optional[torch.nn.Module] = None,
graph_output_var: Optional[str] = None,
tempvars=None,
):
self.root = root
self.top_of_stack: Optional[VariableTracker] = None
self.uses: Counter[VariableTracker] = collections.Counter()
self.graph_outputs: Dict[int, GraphOutputEntry] = {}
self._output: List[Instruction] = []
self.tempvars = tempvars or {}
self.tx = tx
self.graph_output_var = graph_output_var
self.code_options = self.tx.output.code_options
self.cell_and_freevars = self.tx.cell_and_freevars
self.new_var = self.tx.output.new_var
self.mutable_side_effects_from_source = False
self.value_from_source: bool = True
def restore_stack(self, stack_values, *, value_from_source=True):
prior = self.mutable_side_effects_from_source
self.mutable_side_effects_from_source = True
prev = self.value_from_source
self.value_from_source &= value_from_source
try:
self.foreach(stack_values)
finally:
self.mutable_side_effects_from_source = prior
self.value_from_source = prev
def graph_output_vars(self):
return [x.variable for x in self.graph_outputs.values()]
def call_reconstruct(self, value):
res = value.reconstruct(self)
assert res is None, f"reconstruct!=None {value}"
def __call__(self, value, allow_cache=True):
"""Generate code such that top-of-stack (TOS) is set to value"""
if isinstance(value, Source):
self.call_reconstruct(value)
self.clear_tos()
return
assert isinstance(value, VariableTracker)
output = self._output
graph_outputs = self.graph_outputs
if self.top_of_stack is value and allow_cache:
output.append(create_dup_top())
return
if self.mutable_side_effects_from_source:
# this is needed to get aliasing relationships right
# value.mutable_local.source will get mutated to hold `value`
# mutable_side_effects_from_source=False is used to codegen the mutation
# mutable_side_effects_from_source=True is used to codegen a reference
from .side_effects import MutableSideEffects
if isinstance(value.mutable_local, MutableSideEffects):
self(value.mutable_local.source)
return
if allow_cache:
if value.mutable_local and value.mutable_local in self.tempvars:
output.append(self.create_load(self.tempvars[value.mutable_local]))
self.top_of_stack = value
return
if self.tempvars.get(value) is not None:
output.append(self.create_load(self.tempvars[value]))
self.top_of_stack = value
return
if value.source is not None and allow_cache and self.value_from_source:
self.call_reconstruct(value.source)
elif value.is_python_constant() and is_safe_constant(
value.as_python_constant()
):
output.append(self.create_load_const(value.as_python_constant()))
elif isinstance(value, TensorWithTFOverrideVariable):
graph_outputs_key = self.add_graph_output(value)
self.load_import_from(utils.__name__, "to_subclass")
self.load_graph_output(graph_outputs[graph_outputs_key].index)
output.append(
self.create_load_global(
value.global_mangled_class_name(self.tx), False, add=True
)
)
output.extend(create_call_function(2, True))
elif isinstance(
value,
(
TensorVariable,
SymNodeVariable,
UnspecializedPythonVariable,
NumpyNdarrayVariable,
),
):
graph_outputs_key = self.add_graph_output(value)
if isinstance(value, NumpyNdarrayVariable):
self.load_import_from(utils.__name__, "to_numpy_helper")
self.load_graph_output(graph_outputs[graph_outputs_key].index)
if isinstance(value, NumpyNdarrayVariable):
output.extend(create_call_function(1, True))
elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:
output.extend(
[self.create_load_attr("item")] + create_call_function(0, True)
)
elif isinstance(value, NNModuleVariable):
parts = value.module_key.split(".")
if parts[0] in self.code_options["co_varnames"]:
output.append(self.create_load(parts[0]))
parts = parts[1:]
else:
assert self.root is not None
output.append(self.create_load_output(self.root))
for part in parts:
output.append(self.create_load_attr(part))
else:
self.uses[value] += 1
try:
self.call_reconstruct(value)
except NotImplementedError:
unimplemented(f"reconstruct: {value}")
if allow_cache and value in self.tempvars:
self._output.append(create_dup_top())
self.add_cache(value)
self.top_of_stack = value
def add_graph_output(self, value):
graph_outputs_key = id(value.as_proxy())
if graph_outputs_key not in self.graph_outputs:
self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
len(self.graph_outputs), value
)
return graph_outputs_key
def load_graph_output(self, index):
output = self._output
output.append(self.create_load(self.graph_output_var))
output.append(self._create_load_const(index))
output.append(create_instruction("BINARY_SUBSCR"))
def add_cache(self, value):
var = self.new_var()
self.tempvars[value] = var
if value.mutable_local:
self.tempvars[value.mutable_local] = var
self._output.append(self.create_store(var))
def foreach(self, items):
for i in items:
self(i)
def setup_globally_cached(self, name, value, push_null):
"""Store value in a new global"""
name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
f_globals = self.tx.f_globals
if name in f_globals:
assert id(f_globals[name]) == id(value)
else:
f_globals[name] = value
return [self.create_load_global(name, push_null, add=True)]
def clear_tos(self):
self.top_of_stack = None
def append_output(self, inst):
assert isinstance(inst, Instruction)
self._output.append(inst)
self.clear_tos()
def extend_output(self, insts):
assert all(isinstance(x, Instruction) for x in insts)
self._output.extend(insts)
self.clear_tos()
def get_instructions(self) -> List[Instruction]:
return self._output
def create_load(self, name) -> Instruction:
if name in self.cell_and_freevars():
return create_instruction("LOAD_DEREF", argval=name)
assert name in self.code_options["co_varnames"], f"{name} missing"
return create_instruction("LOAD_FAST", argval=name)
def create_load_closure(self, name) -> Instruction:
assert name in self.cell_and_freevars()
return create_instruction("LOAD_CLOSURE", argval=name)
def create_store(self, name) -> Instruction:
if name in self.cell_and_freevars():
return create_instruction("STORE_DEREF", argval=name)
assert name in self.code_options["co_varnames"]
return create_instruction("STORE_FAST", argval=name)
def create_load_global(self, name, push_null, add=False) -> Instruction:
if add:
self.tx.output.update_co_names(name)
assert name in self.code_options["co_names"], f"{name} not in co_names"
return create_load_global(name, push_null)
def create_load_const(self, value) -> Instruction:
assert is_safe_constant(value), f"unsafe constant {value}"
return self._create_load_const(value)
def _create_load_const(self, value) -> Instruction:
return create_instruction("LOAD_CONST", argval=value)
create_load_output = _create_load_const
def create_load_method(self, name):
self.tx.output.update_co_names(name)
return create_instruction("LOAD_METHOD", argval=name)
def create_load_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("LOAD_ATTR", argval=name)
def load_attr(self, name):
self.append_output(self.create_load_attr(name))
def create_load_attrs(self, names):
return [self.create_load_attr(name) for name in names.split(".")]
def create_store_attr(self, name) -> Instruction:
if name not in self.code_options["co_names"]:
self.code_options["co_names"] += (name,)
return create_instruction("STORE_ATTR", argval=name)
def store_attr(self, name):
self.append_output(self.create_store_attr(name))
def load_function_name(self, fn_name, push_null, num_on_stack=0):
"""Load the global fn_name on the stack num_on_stack down"""
output = []
if push_null and sys.version_info >= (3, 11):
output.extend(
[create_instruction("PUSH_NULL"), *self.rot_n(num_on_stack + 1)]
)
output.extend(
[
self.create_load_global(fn_name, False, add=True),
*self.rot_n(num_on_stack + 1),
]
)
return output
def rot_n(self, n):
try:
return create_rot_n(n)
except AttributeError:
# desired rotate bytecode doesn't exist, generate equivalent bytecode
return [
create_instruction("BUILD_TUPLE", arg=n),
self._create_load_const(rot_n_helper(n)),
*create_rot_n(2),
create_instruction("CALL_FUNCTION_EX", arg=0),
create_instruction("UNPACK_SEQUENCE", arg=n),
]
def pop_null(self):
# POP_TOP doesn't work for null, so we pop nulls by pushing in a
# nop function, calling it (which consumes the null), and popping the result.
assert sys.version_info >= (3, 11)
return [
self._create_load_const(lambda: None),
*create_call_function(0, False),
create_instruction("POP_TOP"),
]
def call_function(self, nargs: int, push_null: bool):
self.extend_output(create_call_function(nargs, push_null=push_null))
def dup_top(self):
self.append_output(create_dup_top())
def store(self, varname):
self.append_output(self.create_store(varname))
def make_function_with_closure(
self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
):
freevars = code.co_freevars
assert freevars
output = self._output
if sys.version_info >= (3, 11) and push_null:
output.append(create_instruction("PUSH_NULL"))
output.extend(self.rot_n(num_on_stack + 1))
for var in freevars:
assert var in self.cell_and_freevars()
output.append(create_instruction("LOAD_CLOSURE", argval=var))
output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
output.append(self.create_load_const(code))
if sys.version_info < (3, 11):
output.append(self.create_load_const(fn_name))
output.append(create_instruction("MAKE_FUNCTION", arg=0x08))
output.extend(self.rot_n(num_on_stack + 1))
self.clear_tos()
def create_load_python_module(self, mod, push_null) -> Instruction:
"""
Generate a LOAD_GLOBAL instruction to fetch a given python module.
"""
output = self.tx.output
global_scope = output.global_scope
name = re.sub(r"^.*[.]", "", mod.__name__)
if global_scope.get(name, None) is mod:
return self.create_load_global(name, push_null, add=True)
prefix = f"___module_{name}"
global_name = self.tx.output.install_global_by_id(prefix, mod)
return self.create_load_global(global_name, push_null, add=True)
def make_call_generated_code(self, fn_name: str) -> None:
"""Call the generated code function stored in fn_name"""
self.extend_output(self.load_function_name(fn_name, True))
graphargs = self.tx.output.graphargs
for arg in graphargs:
if arg.is_unspecialized:
self.extend_output(
[
self.create_load_python_module(torch, True),
self.create_load_attr("as_tensor"),
]
)
self.call_reconstruct(arg)
self.extend_output(create_call_function(1, False))
else:
self.call_reconstruct(arg)
self.extend_output(create_call_function(len(graphargs), False))
def load_import_from(self, module_name, object_name) -> None:
self(AttrSource(self.tx.import_source(module_name), object_name))
def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]:
if sys.version_info >= (3, 11):
output = create_call_function(nargs, push_null)
assert output[-2].opname == "PRECALL"
kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
output.insert(-2, kw_names_inst)
return output
return [
self.create_load_const(kw_names),
create_instruction("CALL_FUNCTION_KW", arg=nargs),
]