You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

188 lines
6.4 KiB

import cmath
import math
import warnings
from collections import OrderedDict
from typing import Dict, Optional
import torch
import torch.backends.cudnn as cudnn
from ..nn.modules.utils import _list_with_default, _pair, _quadruple, _single, _triple
_builtin_table: Optional[Dict[int, str]] = None
_modules_containing_builtins = (torch, torch._C._nn, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._sparse, torch._C._special) # type: ignore[attr-defined] # noqa: B950
_builtin_ops = [
# Pairs of (function, op_name)
(_pair, "aten::_pair"),
(_quadruple, "aten::_quadruple"),
(_single, "aten::_single"),
(_triple, "aten::_triple"),
(_list_with_default, "aten::list_with_default"),
(OrderedDict, "aten::dict"),
(dict, "aten::dict"),
(cudnn.is_acceptable, "aten::cudnn_is_acceptable"),
(math.ceil, "aten::ceil"),
(math.copysign, "aten::copysign"),
(math.erf, "aten::erf"),
(math.erfc, "aten::erfc"),
(math.exp, "aten::exp"),
(math.expm1, "aten::expm1"),
(math.fabs, "aten::fabs"),
(math.floor, "aten::floor"),
(math.gamma, "aten::gamma"),
(math.lgamma, "aten::lgamma"),
(math.log, "aten::log"),
(math.log10, "aten::log10"),
(math.log1p, "aten::log1p"),
(math.pow, "aten::pow"),
(math.sqrt, "aten::sqrt"),
(math.isnan, "aten::isnan"),
(math.asinh, "aten::asinh"),
(math.atanh, "aten::atanh"),
(math.cosh, "aten::cosh"),
(math.sinh, "aten::sinh"),
(math.tanh, "aten::tanh"),
(math.acos, "aten::acos"),
(math.asin, "aten::asin"),
(math.atan, "aten::atan"),
(math.atan2, "aten::atan2"),
(math.cos, "aten::cos"),
(math.sin, "aten::sin"),
(math.tan, "aten::tan"),
(math.asinh, "aten::asinh"),
(math.atanh, "aten::atanh"),
(math.acosh, "aten::acosh"),
(math.fmod, "aten::fmod"),
(math.modf, "aten::modf"),
(math.factorial, "aten::factorial"),
(math.frexp, "aten::frexp"),
(math.isinf, "aten::isinf"),
(math.degrees, "aten::degrees"),
(math.radians, "aten::radians"),
(cmath.isnan, "aten::isnan"),
(cmath.isfinite, "aten::isfinite"),
(cmath.isinf, "aten::isinf"),
(cmath.phase, "aten::angle"),
(cmath.rect, "aten::polar"),
(cmath.log, "aten::log"),
(cmath.log10, "aten::log10"),
(cmath.sqrt, "aten::sqrt"),
(cmath.exp, "aten::exp"),
(cmath.sin, "aten::sin"),
(cmath.tan, "aten::tan"),
(cmath.cos, "aten::cos"),
(cmath.asin, "aten::asin"),
(cmath.acos, "aten::acos"),
(cmath.atan, "aten::atan"),
(cmath.sinh, "aten::sinh"),
(cmath.cosh, "aten::cosh"),
(cmath.tanh, "aten::tanh"),
(cmath.asinh, "aten::asinh"),
(cmath.acosh, "aten::acosh"),
(cmath.atanh, "aten::atanh"),
(math.ldexp, "aten::ldexp"),
(torch._assert, "aten::_assert"),
(torch.autograd.grad, "aten::grad"),
(torch.autograd.backward, "aten::backward"),
(torch._C._infer_size, "aten::_infer_size"),
(torch.nn.functional._no_grad_embedding_renorm_, "aten::_no_grad_embedding_renorm_"), # type: ignore[attr-defined]
(torch.nn.functional.assert_int_or_pair, "aten::_assert_int_or_pair"),
(torch.nn.init._no_grad_fill_, "aten::_no_grad_fill_"),
(torch.nn.init._no_grad_normal_, "aten::_no_grad_normal_"),
(torch.nn.init._no_grad_uniform_, "aten::_no_grad_uniform_"),
(torch.nn.init._no_grad_zero_, "aten::_no_grad_zero_"),
(torch._C._get_tracing_state, "aten::_get_tracing_state"),
(torch._C._get_cpu_capability, "aten::_get_cpu_capability"),
(warnings.warn, "aten::warn"),
(torch._VF.stft, "aten::stft"), # type: ignore[attr-defined]
(torch._VF.istft, "aten::istft"), # type: ignore[attr-defined]
(torch._VF.cdist, "aten::cdist"), # type: ignore[attr-defined]
(torch._VF.norm, "aten::norm"), # type: ignore[attr-defined]
(torch._VF.unique_dim, "aten::unique_dim"),
(torch._VF.unique_consecutive, "aten::unique_consecutive"), # type: ignore[attr-defined]
(torch._VF.nuclear_norm, "aten::nuclear_norm"),
(torch._VF.frobenius_norm, "aten::frobenius_norm"),
(torch._VF.tensordot, "aten::tensordot"), # type: ignore[attr-defined]
]
# ops in torch.functional are bound to torch
# in these cases, we want to resolve the function to their python implementation
# instead looking up a builtin "aten::" schema
def _gen_torch_functional_registered_ops():
# eventually ops should encompass all of torch/functional.py, (torch.functional.__all__)
# but we are currently only able to compile some of the functions. additionally,
# some functions directly map to their aten:: implementations.
# TODO: add support for more ops
ops = [
"stft",
"istft",
"lu",
"cdist",
"norm",
"unique",
"unique_consecutive",
"tensordot",
]
return {getattr(torch.functional, name) for name in ops}
_functional_registered_ops = _gen_torch_functional_registered_ops()
def _is_special_functional_bound_op(fn):
return fn in _functional_registered_ops
# lazily built to ensure the correct initialization order
def _get_builtin_table():
global _builtin_table
if _builtin_table is not None:
return _builtin_table
_builtin_table = {}
def register_all(mod):
for name in dir(mod):
v = getattr(mod, name)
if (
callable(v)
and not _is_special_functional_bound_op(v)
and v is not torch.no_grad
and v is not torch.autocast
):
# Fixup inconsistency in segment_reduce
if name == "_segment_reduce":
name = name[1:]
_builtin_ops.append((v, "aten::" + name))
for mod in _modules_containing_builtins:
register_all(mod)
_builtin_ops.append((math.gcd, "aten::gcd"))
_builtin_ops.append((math.isfinite, "aten::isfinite"))
_builtin_ops.append((math.remainder, "aten::mathremainder")) # type: ignore[attr-defined]
import torch.distributed.autograd as dist_autograd
if dist_autograd.is_available():
_builtin_ops.append((dist_autograd.get_gradients, "aten::get_gradients"))
_builtin_ops.append((dist_autograd.backward, "aten::dist_backward"))
# populate the _builtin_table from _builtin_ops
for builtin, aten_op in _builtin_ops:
_builtin_table[id(builtin)] = aten_op
return _builtin_table
def _register_builtin(fn, op):
_get_builtin_table()[id(fn)] = op
def _find_builtin(fn):
return _get_builtin_table().get(id(fn))