You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2429 lines
103 KiB
2429 lines
103 KiB
import copy
|
|
import glob
|
|
import importlib
|
|
import importlib.abc
|
|
import os
|
|
import re
|
|
import shlex
|
|
import shutil
|
|
import setuptools
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
import warnings
|
|
import collections
|
|
from pathlib import Path
|
|
import errno
|
|
|
|
import torch
|
|
import torch._appdirs
|
|
from .file_baton import FileBaton
|
|
from ._cpp_extension_versioner import ExtensionVersioner
|
|
from .hipify import hipify_python
|
|
from .hipify.hipify_python import GeneratedFileCleaner
|
|
from typing import Dict, List, Optional, Union, Tuple
|
|
from torch.torch_version import TorchVersion, Version
|
|
|
|
from setuptools.command.build_ext import build_ext
|
|
|
|
IS_WINDOWS = sys.platform == 'win32'
|
|
IS_MACOS = sys.platform.startswith('darwin')
|
|
IS_LINUX = sys.platform.startswith('linux')
|
|
LIB_EXT = '.pyd' if IS_WINDOWS else '.so'
|
|
EXEC_EXT = '.exe' if IS_WINDOWS else ''
|
|
CLIB_PREFIX = '' if IS_WINDOWS else 'lib'
|
|
CLIB_EXT = '.dll' if IS_WINDOWS else '.so'
|
|
SHARED_FLAG = '/DLL' if IS_WINDOWS else '-shared'
|
|
|
|
_HERE = os.path.abspath(__file__)
|
|
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
|
|
TORCH_LIB_PATH = os.path.join(_TORCH_PATH, 'lib')
|
|
|
|
|
|
SUBPROCESS_DECODE_ARGS = ('oem',) if IS_WINDOWS else ()
|
|
MINIMUM_GCC_VERSION = (5, 0, 0)
|
|
MINIMUM_MSVC_VERSION = (19, 0, 24215)
|
|
|
|
VersionRange = Tuple[Tuple[int, ...], Tuple[int, ...]]
|
|
VersionMap = Dict[str, VersionRange]
|
|
# The following values were taken from the following GitHub gist that
|
|
# summarizes the minimum valid major versions of g++/clang++ for each supported
|
|
# CUDA version: https://gist.github.com/ax3l/9489132
|
|
# Or from include/crt/host_config.h in the CUDA SDK
|
|
# The second value is the exclusive(!) upper bound, i.e. min <= version < max
|
|
CUDA_GCC_VERSIONS: VersionMap = {
|
|
'11.0': (MINIMUM_GCC_VERSION, (10, 0)),
|
|
'11.1': (MINIMUM_GCC_VERSION, (11, 0)),
|
|
'11.2': (MINIMUM_GCC_VERSION, (11, 0)),
|
|
'11.3': (MINIMUM_GCC_VERSION, (11, 0)),
|
|
'11.4': ((6, 0, 0), (12, 0)),
|
|
'11.5': ((6, 0, 0), (12, 0)),
|
|
'11.6': ((6, 0, 0), (12, 0)),
|
|
'11.7': ((6, 0, 0), (12, 0)),
|
|
}
|
|
|
|
MINIMUM_CLANG_VERSION = (3, 3, 0)
|
|
CUDA_CLANG_VERSIONS: VersionMap = {
|
|
'11.1': (MINIMUM_CLANG_VERSION, (11, 0)),
|
|
'11.2': (MINIMUM_CLANG_VERSION, (12, 0)),
|
|
'11.3': (MINIMUM_CLANG_VERSION, (12, 0)),
|
|
'11.4': (MINIMUM_CLANG_VERSION, (13, 0)),
|
|
'11.5': (MINIMUM_CLANG_VERSION, (13, 0)),
|
|
'11.6': (MINIMUM_CLANG_VERSION, (14, 0)),
|
|
'11.7': (MINIMUM_CLANG_VERSION, (14, 0)),
|
|
}
|
|
|
|
__all__ = ["get_default_build_root", "check_compiler_ok_for_platform", "get_compiler_abi_compatibility_and_version", "BuildExtension",
|
|
"CppExtension", "CUDAExtension", "include_paths", "library_paths", "load", "load_inline", "is_ninja_available",
|
|
"verify_ninja_availability", "remove_extension_h_precompiler_headers", "get_cxx_compiler", "check_compiler_is_gcc"]
|
|
# Taken directly from python stdlib < 3.9
|
|
# See https://github.com/pytorch/pytorch/issues/48617
|
|
def _nt_quote_args(args: Optional[List[str]]) -> List[str]:
|
|
"""Quote command-line arguments for DOS/Windows conventions.
|
|
|
|
Just wraps every argument which contains blanks in double quotes, and
|
|
returns a new argument list.
|
|
"""
|
|
# Cover None-type
|
|
if not args:
|
|
return []
|
|
return [f'"{arg}"' if ' ' in arg else arg for arg in args]
|
|
|
|
def _find_cuda_home() -> Optional[str]:
|
|
"""Find the CUDA install path."""
|
|
# Guess #1
|
|
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
|
if cuda_home is None:
|
|
# Guess #2
|
|
try:
|
|
which = 'where' if IS_WINDOWS else 'which'
|
|
with open(os.devnull, 'w') as devnull:
|
|
nvcc = subprocess.check_output([which, 'nvcc'],
|
|
stderr=devnull).decode(*SUBPROCESS_DECODE_ARGS).rstrip('\r\n')
|
|
cuda_home = os.path.dirname(os.path.dirname(nvcc))
|
|
except Exception:
|
|
# Guess #3
|
|
if IS_WINDOWS:
|
|
cuda_homes = glob.glob(
|
|
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
|
|
if len(cuda_homes) == 0:
|
|
cuda_home = ''
|
|
else:
|
|
cuda_home = cuda_homes[0]
|
|
else:
|
|
cuda_home = '/usr/local/cuda'
|
|
if not os.path.exists(cuda_home):
|
|
cuda_home = None
|
|
if cuda_home and not torch.cuda.is_available():
|
|
print(f"No CUDA runtime is found, using CUDA_HOME='{cuda_home}'",
|
|
file=sys.stderr)
|
|
return cuda_home
|
|
|
|
def _find_rocm_home() -> Optional[str]:
|
|
"""Find the ROCm install path."""
|
|
# Guess #1
|
|
rocm_home = os.environ.get('ROCM_HOME') or os.environ.get('ROCM_PATH')
|
|
if rocm_home is None:
|
|
# Guess #2
|
|
hipcc_path = shutil.which('hipcc')
|
|
if hipcc_path is not None:
|
|
rocm_home = os.path.dirname(os.path.dirname(
|
|
os.path.realpath(hipcc_path)))
|
|
# can be either <ROCM_HOME>/hip/bin/hipcc or <ROCM_HOME>/bin/hipcc
|
|
if os.path.basename(rocm_home) == 'hip':
|
|
rocm_home = os.path.dirname(rocm_home)
|
|
else:
|
|
# Guess #3
|
|
fallback_path = '/opt/rocm'
|
|
if os.path.exists(fallback_path):
|
|
rocm_home = fallback_path
|
|
if rocm_home and torch.version.hip is None:
|
|
print(f"No ROCm runtime is found, using ROCM_HOME='{rocm_home}'",
|
|
file=sys.stderr)
|
|
return rocm_home
|
|
|
|
|
|
def _join_rocm_home(*paths) -> str:
|
|
"""
|
|
Join paths with ROCM_HOME, or raises an error if it ROCM_HOME is not set.
|
|
|
|
This is basically a lazy way of raising an error for missing $ROCM_HOME
|
|
only once we need to get any ROCm-specific path.
|
|
"""
|
|
if ROCM_HOME is None:
|
|
raise OSError('ROCM_HOME environment variable is not set. '
|
|
'Please set it to your ROCm install root.')
|
|
elif IS_WINDOWS:
|
|
raise OSError('Building PyTorch extensions using '
|
|
'ROCm and Windows is not supported.')
|
|
return os.path.join(ROCM_HOME, *paths)
|
|
|
|
|
|
ABI_INCOMPATIBILITY_WARNING = '''
|
|
|
|
!! WARNING !!
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
Your compiler ({}) may be ABI-incompatible with PyTorch!
|
|
Please use a compiler that is ABI-compatible with GCC 5.0 and above.
|
|
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.
|
|
|
|
See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6
|
|
for instructions on how to install GCC 5 or higher.
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
!! WARNING !!
|
|
'''
|
|
WRONG_COMPILER_WARNING = '''
|
|
|
|
!! WARNING !!
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
Your compiler ({user_compiler}) is not compatible with the compiler Pytorch was
|
|
built with for this platform, which is {pytorch_compiler} on {platform}. Please
|
|
use {pytorch_compiler} to to compile your extension. Alternatively, you may
|
|
compile PyTorch from source using {user_compiler}, and then you can also use
|
|
{user_compiler} to compile your extension.
|
|
|
|
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
|
|
with compiling PyTorch from source.
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
!! WARNING !!
|
|
'''
|
|
CUDA_MISMATCH_MESSAGE = '''
|
|
The detected CUDA version ({0}) mismatches the version that was used to compile
|
|
PyTorch ({1}). Please make sure to use the same CUDA versions.
|
|
'''
|
|
CUDA_MISMATCH_WARN = "The detected CUDA version ({0}) has a minor version mismatch with the version that was used to compile PyTorch ({1}). Most likely this shouldn't be a problem."
|
|
CUDA_NOT_FOUND_MESSAGE = '''
|
|
CUDA was not found on the system, please set the CUDA_HOME or the CUDA_PATH
|
|
environment variable or add NVCC to your system PATH. The extension compilation will fail.
|
|
'''
|
|
ROCM_HOME = _find_rocm_home()
|
|
HIP_HOME = _join_rocm_home('hip') if ROCM_HOME else None
|
|
IS_HIP_EXTENSION = True if ((ROCM_HOME is not None) and (torch.version.hip is not None)) else False
|
|
ROCM_VERSION = None
|
|
if torch.version.hip is not None:
|
|
ROCM_VERSION = tuple(int(v) for v in torch.version.hip.split('.')[:2])
|
|
|
|
CUDA_HOME = _find_cuda_home() if torch.cuda._is_compiled() else None
|
|
CUDNN_HOME = os.environ.get('CUDNN_HOME') or os.environ.get('CUDNN_PATH')
|
|
# PyTorch releases have the version pattern major.minor.patch, whereas when
|
|
# PyTorch is built from source, we append the git commit hash, which gives
|
|
# it the below pattern.
|
|
BUILT_FROM_SOURCE_VERSION_PATTERN = re.compile(r'\d+\.\d+\.\d+\w+\+\w+')
|
|
|
|
COMMON_MSVC_FLAGS = ['/MD', '/wd4819', '/wd4251', '/wd4244', '/wd4267', '/wd4275', '/wd4018', '/wd4190', '/wd4624', '/wd4067', '/wd4068', '/EHsc']
|
|
|
|
MSVC_IGNORE_CUDAFE_WARNINGS = [
|
|
'base_class_has_different_dll_interface',
|
|
'field_without_dll_interface',
|
|
'dll_interface_conflict_none_assumed',
|
|
'dll_interface_conflict_dllexport_assumed'
|
|
]
|
|
|
|
COMMON_NVCC_FLAGS = [
|
|
'-D__CUDA_NO_HALF_OPERATORS__',
|
|
'-D__CUDA_NO_HALF_CONVERSIONS__',
|
|
'-D__CUDA_NO_BFLOAT16_CONVERSIONS__',
|
|
'-D__CUDA_NO_HALF2_OPERATORS__',
|
|
'--expt-relaxed-constexpr'
|
|
]
|
|
|
|
COMMON_HIP_FLAGS = [
|
|
'-fPIC',
|
|
'-D__HIP_PLATFORM_AMD__=1',
|
|
'-DUSE_ROCM=1',
|
|
]
|
|
|
|
if ROCM_VERSION is not None and ROCM_VERSION >= (6, 0):
|
|
COMMON_HIP_FLAGS.append('-DHIPBLAS_V2')
|
|
|
|
COMMON_HIPCC_FLAGS = [
|
|
'-DCUDA_HAS_FP16=1',
|
|
'-D__HIP_NO_HALF_OPERATORS__=1',
|
|
'-D__HIP_NO_HALF_CONVERSIONS__=1',
|
|
]
|
|
|
|
JIT_EXTENSION_VERSIONER = ExtensionVersioner()
|
|
|
|
PLAT_TO_VCVARS = {
|
|
'win32' : 'x86',
|
|
'win-amd64' : 'x86_amd64',
|
|
}
|
|
|
|
def get_cxx_compiler():
|
|
if IS_WINDOWS:
|
|
compiler = os.environ.get('CXX', 'cl')
|
|
else:
|
|
compiler = os.environ.get('CXX', 'c++')
|
|
return compiler
|
|
|
|
def _is_binary_build() -> bool:
|
|
return not BUILT_FROM_SOURCE_VERSION_PATTERN.match(torch.version.__version__)
|
|
|
|
|
|
def _accepted_compilers_for_platform() -> List[str]:
|
|
# gnu-c++ and gnu-cc are the conda gcc compilers
|
|
return ['clang++', 'clang'] if IS_MACOS else ['g++', 'gcc', 'gnu-c++', 'gnu-cc', 'clang++', 'clang']
|
|
|
|
def _maybe_write(filename, new_content):
|
|
r'''
|
|
Equivalent to writing the content into the file but will not touch the file
|
|
if it already had the right content (to avoid triggering recompile).
|
|
'''
|
|
if os.path.exists(filename):
|
|
with open(filename) as f:
|
|
content = f.read()
|
|
|
|
if content == new_content:
|
|
# The file already contains the right thing!
|
|
return
|
|
|
|
with open(filename, 'w') as source_file:
|
|
source_file.write(new_content)
|
|
|
|
def get_default_build_root() -> str:
|
|
"""
|
|
Return the path to the root folder under which extensions will built.
|
|
|
|
For each extension module built, there will be one folder underneath the
|
|
folder returned by this function. For example, if ``p`` is the path
|
|
returned by this function and ``ext`` the name of an extension, the build
|
|
folder for the extension will be ``p/ext``.
|
|
|
|
This directory is **user-specific** so that multiple users on the same
|
|
machine won't meet permission issues.
|
|
"""
|
|
return os.path.realpath(torch._appdirs.user_cache_dir(appname='torch_extensions'))
|
|
|
|
|
|
def check_compiler_ok_for_platform(compiler: str) -> bool:
|
|
"""
|
|
Verify that the compiler is the expected one for the current platform.
|
|
|
|
Args:
|
|
compiler (str): The compiler executable to check.
|
|
|
|
Returns:
|
|
True if the compiler is gcc/g++ on Linux or clang/clang++ on macOS,
|
|
and always True for Windows.
|
|
"""
|
|
if IS_WINDOWS:
|
|
return True
|
|
which = subprocess.check_output(['which', compiler], stderr=subprocess.STDOUT)
|
|
# Use os.path.realpath to resolve any symlinks, in particular from 'c++' to e.g. 'g++'.
|
|
compiler_path = os.path.realpath(which.decode(*SUBPROCESS_DECODE_ARGS).strip())
|
|
# Check the compiler name
|
|
if any(name in compiler_path for name in _accepted_compilers_for_platform()):
|
|
return True
|
|
# If compiler wrapper is used try to infer the actual compiler by invoking it with -v flag
|
|
env = os.environ.copy()
|
|
env['LC_ALL'] = 'C' # Don't localize output
|
|
version_string = subprocess.check_output([compiler, '-v'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
|
|
if IS_LINUX:
|
|
# Check for 'gcc' or 'g++' for sccache wrapper
|
|
pattern = re.compile("^COLLECT_GCC=(.*)$", re.MULTILINE)
|
|
results = re.findall(pattern, version_string)
|
|
if len(results) != 1:
|
|
# Clang is also a supported compiler on Linux
|
|
# Though on Ubuntu it's sometimes called "Ubuntu clang version"
|
|
return 'clang version' in version_string
|
|
compiler_path = os.path.realpath(results[0].strip())
|
|
# On RHEL/CentOS c++ is a gcc compiler wrapper
|
|
if os.path.basename(compiler_path) == 'c++' and 'gcc version' in version_string:
|
|
return True
|
|
return any(name in compiler_path for name in _accepted_compilers_for_platform())
|
|
if IS_MACOS:
|
|
# Check for 'clang' or 'clang++'
|
|
return version_string.startswith("Apple clang")
|
|
return False
|
|
|
|
|
|
def get_compiler_abi_compatibility_and_version(compiler) -> Tuple[bool, TorchVersion]:
|
|
"""
|
|
Determine if the given compiler is ABI-compatible with PyTorch alongside its version.
|
|
|
|
Args:
|
|
compiler (str): The compiler executable name to check (e.g. ``g++``).
|
|
Must be executable in a shell process.
|
|
|
|
Returns:
|
|
A tuple that contains a boolean that defines if the compiler is (likely) ABI-incompatible with PyTorch,
|
|
followed by a `TorchVersion` string that contains the compiler version separated by dots.
|
|
"""
|
|
if not _is_binary_build():
|
|
return (True, TorchVersion('0.0.0'))
|
|
if os.environ.get('TORCH_DONT_CHECK_COMPILER_ABI') in ['ON', '1', 'YES', 'TRUE', 'Y']:
|
|
return (True, TorchVersion('0.0.0'))
|
|
|
|
# First check if the compiler is one of the expected ones for the particular platform.
|
|
if not check_compiler_ok_for_platform(compiler):
|
|
warnings.warn(WRONG_COMPILER_WARNING.format(
|
|
user_compiler=compiler,
|
|
pytorch_compiler=_accepted_compilers_for_platform()[0],
|
|
platform=sys.platform))
|
|
return (False, TorchVersion('0.0.0'))
|
|
|
|
if IS_MACOS:
|
|
# There is no particular minimum version we need for clang, so we're good here.
|
|
return (True, TorchVersion('0.0.0'))
|
|
try:
|
|
if IS_LINUX:
|
|
minimum_required_version = MINIMUM_GCC_VERSION
|
|
versionstr = subprocess.check_output([compiler, '-dumpfullversion', '-dumpversion'])
|
|
version = versionstr.decode(*SUBPROCESS_DECODE_ARGS).strip().split('.')
|
|
else:
|
|
minimum_required_version = MINIMUM_MSVC_VERSION
|
|
compiler_info = subprocess.check_output(compiler, stderr=subprocess.STDOUT)
|
|
match = re.search(r'(\d+)\.(\d+)\.(\d+)', compiler_info.decode(*SUBPROCESS_DECODE_ARGS).strip())
|
|
version = ['0', '0', '0'] if match is None else list(match.groups())
|
|
except Exception:
|
|
_, error, _ = sys.exc_info()
|
|
warnings.warn(f'Error checking compiler version for {compiler}: {error}')
|
|
return (False, TorchVersion('0.0.0'))
|
|
|
|
if tuple(map(int, version)) >= minimum_required_version:
|
|
return (True, TorchVersion('.'.join(version)))
|
|
|
|
compiler = f'{compiler} {".".join(version)}'
|
|
warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
|
|
|
|
return (False, TorchVersion('.'.join(version)))
|
|
|
|
|
|
def _check_cuda_version(compiler_name: str, compiler_version: TorchVersion) -> None:
|
|
if not CUDA_HOME:
|
|
raise RuntimeError(CUDA_NOT_FOUND_MESSAGE)
|
|
|
|
nvcc = os.path.join(CUDA_HOME, 'bin', 'nvcc')
|
|
cuda_version_str = subprocess.check_output([nvcc, '--version']).strip().decode(*SUBPROCESS_DECODE_ARGS)
|
|
cuda_version = re.search(r'release (\d+[.]\d+)', cuda_version_str)
|
|
if cuda_version is None:
|
|
return
|
|
|
|
cuda_str_version = cuda_version.group(1)
|
|
cuda_ver = Version(cuda_str_version)
|
|
if torch.version.cuda is None:
|
|
return
|
|
|
|
torch_cuda_version = Version(torch.version.cuda)
|
|
if cuda_ver != torch_cuda_version:
|
|
# major/minor attributes are only available in setuptools>=49.4.0
|
|
if getattr(cuda_ver, "major", None) is None:
|
|
raise ValueError("setuptools>=49.4.0 is required")
|
|
if cuda_ver.major != torch_cuda_version.major:
|
|
raise RuntimeError(CUDA_MISMATCH_MESSAGE.format(cuda_str_version, torch.version.cuda))
|
|
warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda))
|
|
|
|
if not (sys.platform.startswith('linux') and
|
|
os.environ.get('TORCH_DONT_CHECK_COMPILER_ABI') not in ['ON', '1', 'YES', 'TRUE', 'Y'] and
|
|
_is_binary_build()):
|
|
return
|
|
|
|
cuda_compiler_bounds: VersionMap = CUDA_CLANG_VERSIONS if compiler_name.startswith('clang') else CUDA_GCC_VERSIONS
|
|
|
|
if cuda_str_version not in cuda_compiler_bounds:
|
|
warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}')
|
|
else:
|
|
min_compiler_version, max_excl_compiler_version = cuda_compiler_bounds[cuda_str_version]
|
|
# Special case for 11.4.0, which has lower compiler bounds than 11.4.1
|
|
if "V11.4.48" in cuda_version_str and cuda_compiler_bounds == CUDA_GCC_VERSIONS:
|
|
max_excl_compiler_version = (11, 0)
|
|
min_compiler_version_str = '.'.join(map(str, min_compiler_version))
|
|
max_excl_compiler_version_str = '.'.join(map(str, max_excl_compiler_version))
|
|
|
|
version_bound_str = f'>={min_compiler_version_str}, <{max_excl_compiler_version_str}'
|
|
|
|
if compiler_version < TorchVersion(min_compiler_version_str):
|
|
raise RuntimeError(
|
|
f'The current installed version of {compiler_name} ({compiler_version}) is less '
|
|
f'than the minimum required version by CUDA {cuda_str_version} ({min_compiler_version_str}). '
|
|
f'Please make sure to use an adequate version of {compiler_name} ({version_bound_str}).'
|
|
)
|
|
if compiler_version >= TorchVersion(max_excl_compiler_version_str):
|
|
raise RuntimeError(
|
|
f'The current installed version of {compiler_name} ({compiler_version}) is greater '
|
|
f'than the maximum required version by CUDA {cuda_str_version}. '
|
|
f'Please make sure to use an adequate version of {compiler_name} ({version_bound_str}).'
|
|
)
|
|
|
|
|
|
class BuildExtension(build_ext):
|
|
"""
|
|
A custom :mod:`setuptools` build extension .
|
|
|
|
This :class:`setuptools.build_ext` subclass takes care of passing the
|
|
minimum required compiler flags (e.g. ``-std=c++17``) as well as mixed
|
|
C++/CUDA compilation (and support for CUDA files in general).
|
|
|
|
When using :class:`BuildExtension`, it is allowed to supply a dictionary
|
|
for ``extra_compile_args`` (rather than the usual list) that maps from
|
|
languages (``cxx`` or ``nvcc``) to a list of additional compiler flags to
|
|
supply to the compiler. This makes it possible to supply different flags to
|
|
the C++ and CUDA compiler during mixed compilation.
|
|
|
|
``use_ninja`` (bool): If ``use_ninja`` is ``True`` (default), then we
|
|
attempt to build using the Ninja backend. Ninja greatly speeds up
|
|
compilation compared to the standard ``setuptools.build_ext``.
|
|
Fallbacks to the standard distutils backend if Ninja is not available.
|
|
|
|
.. note::
|
|
By default, the Ninja backend uses #CPUS + 2 workers to build the
|
|
extension. This may use up too many resources on some systems. One
|
|
can control the number of workers by setting the `MAX_JOBS` environment
|
|
variable to a non-negative number.
|
|
"""
|
|
|
|
@classmethod
|
|
def with_options(cls, **options):
|
|
"""Return a subclass with alternative constructor that extends any original keyword arguments to the original constructor with the given options."""
|
|
class cls_with_options(cls): # type: ignore[misc, valid-type]
|
|
def __init__(self, *args, **kwargs):
|
|
kwargs.update(options)
|
|
super().__init__(*args, **kwargs)
|
|
|
|
return cls_with_options
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
self.no_python_abi_suffix = kwargs.get("no_python_abi_suffix", False)
|
|
|
|
self.use_ninja = kwargs.get('use_ninja', True)
|
|
if self.use_ninja:
|
|
# Test if we can use ninja. Fallback otherwise.
|
|
msg = ('Attempted to use ninja as the BuildExtension backend but '
|
|
'{}. Falling back to using the slow distutils backend.')
|
|
if not is_ninja_available():
|
|
warnings.warn(msg.format('we could not find ninja.'))
|
|
self.use_ninja = False
|
|
|
|
def finalize_options(self) -> None:
|
|
super().finalize_options()
|
|
if self.use_ninja:
|
|
self.force = True
|
|
|
|
def build_extensions(self) -> None:
|
|
compiler_name, compiler_version = self._check_abi()
|
|
|
|
cuda_ext = False
|
|
extension_iter = iter(self.extensions)
|
|
extension = next(extension_iter, None)
|
|
while not cuda_ext and extension:
|
|
for source in extension.sources:
|
|
_, ext = os.path.splitext(source)
|
|
if ext == '.cu':
|
|
cuda_ext = True
|
|
break
|
|
extension = next(extension_iter, None)
|
|
|
|
if cuda_ext and not IS_HIP_EXTENSION:
|
|
_check_cuda_version(compiler_name, compiler_version)
|
|
|
|
for extension in self.extensions:
|
|
# Ensure at least an empty list of flags for 'cxx' and 'nvcc' when
|
|
# extra_compile_args is a dict. Otherwise, default torch flags do
|
|
# not get passed. Necessary when only one of 'cxx' and 'nvcc' is
|
|
# passed to extra_compile_args in CUDAExtension, i.e.
|
|
# CUDAExtension(..., extra_compile_args={'cxx': [...]})
|
|
# or
|
|
# CUDAExtension(..., extra_compile_args={'nvcc': [...]})
|
|
if isinstance(extension.extra_compile_args, dict):
|
|
for ext in ['cxx', 'nvcc']:
|
|
if ext not in extension.extra_compile_args:
|
|
extension.extra_compile_args[ext] = []
|
|
|
|
self._add_compile_flag(extension, '-DTORCH_API_INCLUDE_EXTENSION_H')
|
|
# See note [Pybind11 ABI constants]
|
|
for name in ["COMPILER_TYPE", "STDLIB", "BUILD_ABI"]:
|
|
val = getattr(torch._C, f"_PYBIND11_{name}")
|
|
if val is not None and not IS_WINDOWS:
|
|
self._add_compile_flag(extension, f'-DPYBIND11_{name}="{val}"')
|
|
self._define_torch_extension_name(extension)
|
|
self._add_gnu_cpp_abi_flag(extension)
|
|
|
|
if 'nvcc_dlink' in extension.extra_compile_args:
|
|
assert self.use_ninja, f"With dlink=True, ninja is required to build cuda extension {extension.name}."
|
|
|
|
# Register .cu, .cuh, .hip, and .mm as valid source extensions.
|
|
self.compiler.src_extensions += ['.cu', '.cuh', '.hip']
|
|
if torch.backends.mps.is_built():
|
|
self.compiler.src_extensions += ['.mm']
|
|
# Save the original _compile method for later.
|
|
if self.compiler.compiler_type == 'msvc':
|
|
self.compiler._cpp_extensions += ['.cu', '.cuh']
|
|
original_compile = self.compiler.compile
|
|
original_spawn = self.compiler.spawn
|
|
else:
|
|
original_compile = self.compiler._compile
|
|
|
|
def append_std17_if_no_std_present(cflags) -> None:
|
|
# NVCC does not allow multiple -std to be passed, so we avoid
|
|
# overriding the option if the user explicitly passed it.
|
|
cpp_format_prefix = '/{}:' if self.compiler.compiler_type == 'msvc' else '-{}='
|
|
cpp_flag_prefix = cpp_format_prefix.format('std')
|
|
cpp_flag = cpp_flag_prefix + 'c++17'
|
|
if not any(flag.startswith(cpp_flag_prefix) for flag in cflags):
|
|
cflags.append(cpp_flag)
|
|
|
|
def unix_cuda_flags(cflags):
|
|
cflags = (COMMON_NVCC_FLAGS +
|
|
['--compiler-options', "'-fPIC'"] +
|
|
cflags + _get_cuda_arch_flags(cflags))
|
|
|
|
# NVCC does not allow multiple -ccbin/--compiler-bindir to be passed, so we avoid
|
|
# overriding the option if the user explicitly passed it.
|
|
_ccbin = os.getenv("CC")
|
|
if (
|
|
_ccbin is not None
|
|
and not any(flag.startswith(('-ccbin', '--compiler-bindir')) for flag in cflags)
|
|
):
|
|
cflags.extend(['-ccbin', _ccbin])
|
|
|
|
return cflags
|
|
|
|
def convert_to_absolute_paths_inplace(paths):
|
|
# Helper function. See Note [Absolute include_dirs]
|
|
if paths is not None:
|
|
for i in range(len(paths)):
|
|
if not os.path.isabs(paths[i]):
|
|
paths[i] = os.path.abspath(paths[i])
|
|
|
|
def unix_wrap_single_compile(obj, src, ext, cc_args, extra_postargs, pp_opts) -> None:
|
|
# Copy before we make any modifications.
|
|
cflags = copy.deepcopy(extra_postargs)
|
|
try:
|
|
original_compiler = self.compiler.compiler_so
|
|
if _is_cuda_file(src):
|
|
nvcc = [_join_rocm_home('bin', 'hipcc') if IS_HIP_EXTENSION else _join_cuda_home('bin', 'nvcc')]
|
|
self.compiler.set_executable('compiler_so', nvcc)
|
|
if isinstance(cflags, dict):
|
|
cflags = cflags['nvcc']
|
|
if IS_HIP_EXTENSION:
|
|
cflags = COMMON_HIPCC_FLAGS + cflags + _get_rocm_arch_flags(cflags)
|
|
else:
|
|
cflags = unix_cuda_flags(cflags)
|
|
elif isinstance(cflags, dict):
|
|
cflags = cflags['cxx']
|
|
if IS_HIP_EXTENSION:
|
|
cflags = COMMON_HIP_FLAGS + cflags
|
|
append_std17_if_no_std_present(cflags)
|
|
|
|
original_compile(obj, src, ext, cc_args, cflags, pp_opts)
|
|
finally:
|
|
# Put the original compiler back in place.
|
|
self.compiler.set_executable('compiler_so', original_compiler)
|
|
|
|
def unix_wrap_ninja_compile(sources,
|
|
output_dir=None,
|
|
macros=None,
|
|
include_dirs=None,
|
|
debug=0,
|
|
extra_preargs=None,
|
|
extra_postargs=None,
|
|
depends=None):
|
|
r"""Compiles sources by outputting a ninja file and running it."""
|
|
# NB: I copied some lines from self.compiler (which is an instance
|
|
# of distutils.UnixCCompiler). See the following link.
|
|
# https://github.com/python/cpython/blob/f03a8f8d5001963ad5b5b28dbd95497e9cc15596/Lib/distutils/ccompiler.py#L564-L567
|
|
# This can be fragile, but a lot of other repos also do this
|
|
# (see https://github.com/search?q=_setup_compile&type=Code)
|
|
# so it is probably OK; we'll also get CI signal if/when
|
|
# we update our python version (which is when distutils can be
|
|
# upgraded)
|
|
|
|
# Use absolute path for output_dir so that the object file paths
|
|
# (`objects`) get generated with absolute paths.
|
|
output_dir = os.path.abspath(output_dir)
|
|
|
|
# See Note [Absolute include_dirs]
|
|
convert_to_absolute_paths_inplace(self.compiler.include_dirs)
|
|
|
|
_, objects, extra_postargs, pp_opts, _ = \
|
|
self.compiler._setup_compile(output_dir, macros,
|
|
include_dirs, sources,
|
|
depends, extra_postargs)
|
|
common_cflags = self.compiler._get_cc_args(pp_opts, debug, extra_preargs)
|
|
extra_cc_cflags = self.compiler.compiler_so[1:]
|
|
with_cuda = any(map(_is_cuda_file, sources))
|
|
|
|
# extra_postargs can be either:
|
|
# - a dict mapping cxx/nvcc to extra flags
|
|
# - a list of extra flags.
|
|
if isinstance(extra_postargs, dict):
|
|
post_cflags = extra_postargs['cxx']
|
|
else:
|
|
post_cflags = list(extra_postargs)
|
|
if IS_HIP_EXTENSION:
|
|
post_cflags = COMMON_HIP_FLAGS + post_cflags
|
|
append_std17_if_no_std_present(post_cflags)
|
|
|
|
cuda_post_cflags = None
|
|
cuda_cflags = None
|
|
if with_cuda:
|
|
cuda_cflags = common_cflags
|
|
if isinstance(extra_postargs, dict):
|
|
cuda_post_cflags = extra_postargs['nvcc']
|
|
else:
|
|
cuda_post_cflags = list(extra_postargs)
|
|
if IS_HIP_EXTENSION:
|
|
cuda_post_cflags = cuda_post_cflags + _get_rocm_arch_flags(cuda_post_cflags)
|
|
cuda_post_cflags = COMMON_HIP_FLAGS + COMMON_HIPCC_FLAGS + cuda_post_cflags
|
|
else:
|
|
cuda_post_cflags = unix_cuda_flags(cuda_post_cflags)
|
|
append_std17_if_no_std_present(cuda_post_cflags)
|
|
cuda_cflags = [shlex.quote(f) for f in cuda_cflags]
|
|
cuda_post_cflags = [shlex.quote(f) for f in cuda_post_cflags]
|
|
|
|
if isinstance(extra_postargs, dict) and 'nvcc_dlink' in extra_postargs:
|
|
cuda_dlink_post_cflags = unix_cuda_flags(extra_postargs['nvcc_dlink'])
|
|
else:
|
|
cuda_dlink_post_cflags = None
|
|
_write_ninja_file_and_compile_objects(
|
|
sources=sources,
|
|
objects=objects,
|
|
cflags=[shlex.quote(f) for f in extra_cc_cflags + common_cflags],
|
|
post_cflags=[shlex.quote(f) for f in post_cflags],
|
|
cuda_cflags=cuda_cflags,
|
|
cuda_post_cflags=cuda_post_cflags,
|
|
cuda_dlink_post_cflags=cuda_dlink_post_cflags,
|
|
build_directory=output_dir,
|
|
verbose=True,
|
|
with_cuda=with_cuda)
|
|
|
|
# Return *all* object filenames, not just the ones we just built.
|
|
return objects
|
|
|
|
def win_cuda_flags(cflags):
|
|
return (COMMON_NVCC_FLAGS +
|
|
cflags + _get_cuda_arch_flags(cflags))
|
|
|
|
def win_wrap_single_compile(sources,
|
|
output_dir=None,
|
|
macros=None,
|
|
include_dirs=None,
|
|
debug=0,
|
|
extra_preargs=None,
|
|
extra_postargs=None,
|
|
depends=None):
|
|
|
|
self.cflags = copy.deepcopy(extra_postargs)
|
|
extra_postargs = None
|
|
|
|
def spawn(cmd):
|
|
# Using regex to match src, obj and include files
|
|
src_regex = re.compile('/T(p|c)(.*)')
|
|
src_list = [
|
|
m.group(2) for m in (src_regex.match(elem) for elem in cmd)
|
|
if m
|
|
]
|
|
|
|
obj_regex = re.compile('/Fo(.*)')
|
|
obj_list = [
|
|
m.group(1) for m in (obj_regex.match(elem) for elem in cmd)
|
|
if m
|
|
]
|
|
|
|
include_regex = re.compile(r'((\-|\/)I.*)')
|
|
include_list = [
|
|
m.group(1)
|
|
for m in (include_regex.match(elem) for elem in cmd) if m
|
|
]
|
|
|
|
if len(src_list) >= 1 and len(obj_list) >= 1:
|
|
src = src_list[0]
|
|
obj = obj_list[0]
|
|
if _is_cuda_file(src):
|
|
nvcc = _join_cuda_home('bin', 'nvcc')
|
|
if isinstance(self.cflags, dict):
|
|
cflags = self.cflags['nvcc']
|
|
elif isinstance(self.cflags, list):
|
|
cflags = self.cflags
|
|
else:
|
|
cflags = []
|
|
|
|
cflags = win_cuda_flags(cflags) + ['-std=c++17', '--use-local-env']
|
|
for flag in COMMON_MSVC_FLAGS:
|
|
cflags = ['-Xcompiler', flag] + cflags
|
|
for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
|
|
cflags = ['-Xcudafe', '--diag_suppress=' + ignore_warning] + cflags
|
|
cmd = [nvcc, '-c', src, '-o', obj] + include_list + cflags
|
|
elif isinstance(self.cflags, dict):
|
|
cflags = COMMON_MSVC_FLAGS + self.cflags['cxx']
|
|
append_std17_if_no_std_present(cflags)
|
|
cmd += cflags
|
|
elif isinstance(self.cflags, list):
|
|
cflags = COMMON_MSVC_FLAGS + self.cflags
|
|
append_std17_if_no_std_present(cflags)
|
|
cmd += cflags
|
|
|
|
return original_spawn(cmd)
|
|
|
|
try:
|
|
self.compiler.spawn = spawn
|
|
return original_compile(sources, output_dir, macros,
|
|
include_dirs, debug, extra_preargs,
|
|
extra_postargs, depends)
|
|
finally:
|
|
self.compiler.spawn = original_spawn
|
|
|
|
def win_wrap_ninja_compile(sources,
|
|
output_dir=None,
|
|
macros=None,
|
|
include_dirs=None,
|
|
debug=0,
|
|
extra_preargs=None,
|
|
extra_postargs=None,
|
|
depends=None):
|
|
|
|
if not self.compiler.initialized:
|
|
self.compiler.initialize()
|
|
output_dir = os.path.abspath(output_dir)
|
|
|
|
# Note [Absolute include_dirs]
|
|
# Convert relative path in self.compiler.include_dirs to absolute path if any,
|
|
# For ninja build, the build location is not local, the build happens
|
|
# in a in script created build folder, relative path lost their correctness.
|
|
# To be consistent with jit extension, we allow user to enter relative include_dirs
|
|
# in setuptools.setup, and we convert the relative path to absolute path here
|
|
convert_to_absolute_paths_inplace(self.compiler.include_dirs)
|
|
|
|
_, objects, extra_postargs, pp_opts, _ = \
|
|
self.compiler._setup_compile(output_dir, macros,
|
|
include_dirs, sources,
|
|
depends, extra_postargs)
|
|
common_cflags = extra_preargs or []
|
|
cflags = []
|
|
if debug:
|
|
cflags.extend(self.compiler.compile_options_debug)
|
|
else:
|
|
cflags.extend(self.compiler.compile_options)
|
|
common_cflags.extend(COMMON_MSVC_FLAGS)
|
|
cflags = cflags + common_cflags + pp_opts
|
|
with_cuda = any(map(_is_cuda_file, sources))
|
|
|
|
# extra_postargs can be either:
|
|
# - a dict mapping cxx/nvcc to extra flags
|
|
# - a list of extra flags.
|
|
if isinstance(extra_postargs, dict):
|
|
post_cflags = extra_postargs['cxx']
|
|
else:
|
|
post_cflags = list(extra_postargs)
|
|
append_std17_if_no_std_present(post_cflags)
|
|
|
|
cuda_post_cflags = None
|
|
cuda_cflags = None
|
|
if with_cuda:
|
|
cuda_cflags = ['-std=c++17', '--use-local-env']
|
|
for common_cflag in common_cflags:
|
|
cuda_cflags.append('-Xcompiler')
|
|
cuda_cflags.append(common_cflag)
|
|
for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
|
|
cuda_cflags.append('-Xcudafe')
|
|
cuda_cflags.append('--diag_suppress=' + ignore_warning)
|
|
cuda_cflags.extend(pp_opts)
|
|
if isinstance(extra_postargs, dict):
|
|
cuda_post_cflags = extra_postargs['nvcc']
|
|
else:
|
|
cuda_post_cflags = list(extra_postargs)
|
|
cuda_post_cflags = win_cuda_flags(cuda_post_cflags)
|
|
|
|
cflags = _nt_quote_args(cflags)
|
|
post_cflags = _nt_quote_args(post_cflags)
|
|
if with_cuda:
|
|
cuda_cflags = _nt_quote_args(cuda_cflags)
|
|
cuda_post_cflags = _nt_quote_args(cuda_post_cflags)
|
|
if isinstance(extra_postargs, dict) and 'nvcc_dlink' in extra_postargs:
|
|
cuda_dlink_post_cflags = win_cuda_flags(extra_postargs['nvcc_dlink'])
|
|
else:
|
|
cuda_dlink_post_cflags = None
|
|
|
|
_write_ninja_file_and_compile_objects(
|
|
sources=sources,
|
|
objects=objects,
|
|
cflags=cflags,
|
|
post_cflags=post_cflags,
|
|
cuda_cflags=cuda_cflags,
|
|
cuda_post_cflags=cuda_post_cflags,
|
|
cuda_dlink_post_cflags=cuda_dlink_post_cflags,
|
|
build_directory=output_dir,
|
|
verbose=True,
|
|
with_cuda=with_cuda)
|
|
|
|
# Return *all* object filenames, not just the ones we just built.
|
|
return objects
|
|
|
|
# Monkey-patch the _compile or compile method.
|
|
# https://github.com/python/cpython/blob/dc0284ee8f7a270b6005467f26d8e5773d76e959/Lib/distutils/ccompiler.py#L511
|
|
if self.compiler.compiler_type == 'msvc':
|
|
if self.use_ninja:
|
|
self.compiler.compile = win_wrap_ninja_compile
|
|
else:
|
|
self.compiler.compile = win_wrap_single_compile
|
|
else:
|
|
if self.use_ninja:
|
|
self.compiler.compile = unix_wrap_ninja_compile
|
|
else:
|
|
self.compiler._compile = unix_wrap_single_compile
|
|
|
|
build_ext.build_extensions(self)
|
|
|
|
def get_ext_filename(self, ext_name):
|
|
# Get the original shared library name. For Python 3, this name will be
|
|
# suffixed with "<SOABI>.so", where <SOABI> will be something like
|
|
# cpython-37m-x86_64-linux-gnu.
|
|
ext_filename = super().get_ext_filename(ext_name)
|
|
# If `no_python_abi_suffix` is `True`, we omit the Python 3 ABI
|
|
# component. This makes building shared libraries with setuptools that
|
|
# aren't Python modules nicer.
|
|
if self.no_python_abi_suffix:
|
|
# The parts will be e.g. ["my_extension", "cpython-37m-x86_64-linux-gnu", "so"].
|
|
ext_filename_parts = ext_filename.split('.')
|
|
# Omit the second to last element.
|
|
without_abi = ext_filename_parts[:-2] + ext_filename_parts[-1:]
|
|
ext_filename = '.'.join(without_abi)
|
|
return ext_filename
|
|
|
|
def _check_abi(self) -> Tuple[str, TorchVersion]:
|
|
# On some platforms, like Windows, compiler_cxx is not available.
|
|
if hasattr(self.compiler, 'compiler_cxx'):
|
|
compiler = self.compiler.compiler_cxx[0]
|
|
else:
|
|
compiler = get_cxx_compiler()
|
|
_, version = get_compiler_abi_compatibility_and_version(compiler)
|
|
# Warn user if VC env is activated but `DISTUILS_USE_SDK` is not set.
|
|
if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' in os.environ and 'DISTUTILS_USE_SDK' not in os.environ:
|
|
msg = ('It seems that the VC environment is activated but DISTUTILS_USE_SDK is not set.'
|
|
'This may lead to multiple activations of the VC env.'
|
|
'Please set `DISTUTILS_USE_SDK=1` and try again.')
|
|
raise UserWarning(msg)
|
|
return compiler, version
|
|
|
|
def _add_compile_flag(self, extension, flag):
|
|
extension.extra_compile_args = copy.deepcopy(extension.extra_compile_args)
|
|
if isinstance(extension.extra_compile_args, dict):
|
|
for args in extension.extra_compile_args.values():
|
|
args.append(flag)
|
|
else:
|
|
extension.extra_compile_args.append(flag)
|
|
|
|
def _define_torch_extension_name(self, extension):
|
|
# pybind11 doesn't support dots in the names
|
|
# so in order to support extensions in the packages
|
|
# like torch._C, we take the last part of the string
|
|
# as the library name
|
|
names = extension.name.split('.')
|
|
name = names[-1]
|
|
define = f'-DTORCH_EXTENSION_NAME={name}'
|
|
self._add_compile_flag(extension, define)
|
|
|
|
def _add_gnu_cpp_abi_flag(self, extension):
|
|
# use the same CXX ABI as what PyTorch was compiled with
|
|
self._add_compile_flag(extension, '-D_GLIBCXX_USE_CXX11_ABI=' + str(int(torch._C._GLIBCXX_USE_CXX11_ABI)))
|
|
|
|
|
|
def CppExtension(name, sources, *args, **kwargs):
|
|
"""
|
|
Create a :class:`setuptools.Extension` for C++.
|
|
|
|
Convenience method that creates a :class:`setuptools.Extension` with the
|
|
bare minimum (but often sufficient) arguments to build a C++ extension.
|
|
|
|
All arguments are forwarded to the :class:`setuptools.Extension`
|
|
constructor. Full list arguments can be found at
|
|
https://setuptools.pypa.io/en/latest/userguide/ext_modules.html#extension-api-reference
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
|
|
>>> from setuptools import setup
|
|
>>> from torch.utils.cpp_extension import BuildExtension, CppExtension
|
|
>>> setup(
|
|
... name='extension',
|
|
... ext_modules=[
|
|
... CppExtension(
|
|
... name='extension',
|
|
... sources=['extension.cpp'],
|
|
... extra_compile_args=['-g'],
|
|
... extra_link_flags=['-Wl,--no-as-needed', '-lm'])
|
|
... ],
|
|
... cmdclass={
|
|
... 'build_ext': BuildExtension
|
|
... })
|
|
"""
|
|
include_dirs = kwargs.get('include_dirs', [])
|
|
include_dirs += include_paths()
|
|
kwargs['include_dirs'] = include_dirs
|
|
|
|
library_dirs = kwargs.get('library_dirs', [])
|
|
library_dirs += library_paths()
|
|
kwargs['library_dirs'] = library_dirs
|
|
|
|
libraries = kwargs.get('libraries', [])
|
|
libraries.append('c10')
|
|
libraries.append('torch')
|
|
libraries.append('torch_cpu')
|
|
libraries.append('torch_python')
|
|
kwargs['libraries'] = libraries
|
|
|
|
kwargs['language'] = 'c++'
|
|
return setuptools.Extension(name, sources, *args, **kwargs)
|
|
|
|
|
|
def CUDAExtension(name, sources, *args, **kwargs):
|
|
"""
|
|
Create a :class:`setuptools.Extension` for CUDA/C++.
|
|
|
|
Convenience method that creates a :class:`setuptools.Extension` with the
|
|
bare minimum (but often sufficient) arguments to build a CUDA/C++
|
|
extension. This includes the CUDA include path, library path and runtime
|
|
library.
|
|
|
|
All arguments are forwarded to the :class:`setuptools.Extension`
|
|
constructor. Full list arguments can be found at
|
|
https://setuptools.pypa.io/en/latest/userguide/ext_modules.html#extension-api-reference
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
|
|
>>> from setuptools import setup
|
|
>>> from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
|
>>> setup(
|
|
... name='cuda_extension',
|
|
... ext_modules=[
|
|
... CUDAExtension(
|
|
... name='cuda_extension',
|
|
... sources=['extension.cpp', 'extension_kernel.cu'],
|
|
... extra_compile_args={'cxx': ['-g'],
|
|
... 'nvcc': ['-O2']},
|
|
... extra_link_flags=['-Wl,--no-as-needed', '-lcuda'])
|
|
... ],
|
|
... cmdclass={
|
|
... 'build_ext': BuildExtension
|
|
... })
|
|
|
|
Compute capabilities:
|
|
|
|
By default the extension will be compiled to run on all archs of the cards visible during the
|
|
building process of the extension, plus PTX. If down the road a new card is installed the
|
|
extension may need to be recompiled. If a visible card has a compute capability (CC) that's
|
|
newer than the newest version for which your nvcc can build fully-compiled binaries, Pytorch
|
|
will make nvcc fall back to building kernels with the newest version of PTX your nvcc does
|
|
support (see below for details on PTX).
|
|
|
|
You can override the default behavior using `TORCH_CUDA_ARCH_LIST` to explicitly specify which
|
|
CCs you want the extension to support:
|
|
|
|
``TORCH_CUDA_ARCH_LIST="6.1 8.6" python build_my_extension.py``
|
|
``TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5 8.0 8.6+PTX" python build_my_extension.py``
|
|
|
|
The +PTX option causes extension kernel binaries to include PTX instructions for the specified
|
|
CC. PTX is an intermediate representation that allows kernels to runtime-compile for any CC >=
|
|
the specified CC (for example, 8.6+PTX generates PTX that can runtime-compile for any GPU with
|
|
CC >= 8.6). This improves your binary's forward compatibility. However, relying on older PTX to
|
|
provide forward compat by runtime-compiling for newer CCs can modestly reduce performance on
|
|
those newer CCs. If you know exact CC(s) of the GPUs you want to target, you're always better
|
|
off specifying them individually. For example, if you want your extension to run on 8.0 and 8.6,
|
|
"8.0+PTX" would work functionally because it includes PTX that can runtime-compile for 8.6, but
|
|
"8.0 8.6" would be better.
|
|
|
|
Note that while it's possible to include all supported archs, the more archs get included the
|
|
slower the building process will be, as it will build a separate kernel image for each arch.
|
|
|
|
Note that CUDA-11.5 nvcc will hit internal compiler error while parsing torch/extension.h on Windows.
|
|
To workaround the issue, move python binding logic to pure C++ file.
|
|
|
|
Example use:
|
|
#include <ATen/ATen.h>
|
|
at::Tensor SigmoidAlphaBlendForwardCuda(....)
|
|
|
|
Instead of:
|
|
#include <torch/extension.h>
|
|
torch::Tensor SigmoidAlphaBlendForwardCuda(...)
|
|
|
|
Currently open issue for nvcc bug: https://github.com/pytorch/pytorch/issues/69460
|
|
Complete workaround code example: https://github.com/facebookresearch/pytorch3d/commit/cb170ac024a949f1f9614ffe6af1c38d972f7d48
|
|
|
|
Relocatable device code linking:
|
|
|
|
If you want to reference device symbols across compilation units (across object files),
|
|
the object files need to be built with `relocatable device code` (-rdc=true or -dc).
|
|
An exception to this rule is "dynamic parallelism" (nested kernel launches) which is not used a lot anymore.
|
|
`Relocatable device code` is less optimized so it needs to be used only on object files that need it.
|
|
Using `-dlto` (Device Link Time Optimization) at the device code compilation step and `dlink` step
|
|
help reduce the protentional perf degradation of `-rdc`.
|
|
Note that it needs to be used at both steps to be useful.
|
|
|
|
If you have `rdc` objects you need to have an extra `-dlink` (device linking) step before the CPU symbol linking step.
|
|
There is also a case where `-dlink` is used without `-rdc`:
|
|
when an extension is linked against a static lib containing rdc-compiled objects
|
|
like the [NVSHMEM library](https://developer.nvidia.com/nvshmem).
|
|
|
|
Note: Ninja is required to build a CUDA Extension with RDC linking.
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
|
|
>>> CUDAExtension(
|
|
... name='cuda_extension',
|
|
... sources=['extension.cpp', 'extension_kernel.cu'],
|
|
... dlink=True,
|
|
... dlink_libraries=["dlink_lib"],
|
|
... extra_compile_args={'cxx': ['-g'],
|
|
... 'nvcc': ['-O2', '-rdc=true']})
|
|
"""
|
|
library_dirs = kwargs.get('library_dirs', [])
|
|
library_dirs += library_paths(cuda=True)
|
|
kwargs['library_dirs'] = library_dirs
|
|
|
|
libraries = kwargs.get('libraries', [])
|
|
libraries.append('c10')
|
|
libraries.append('torch')
|
|
libraries.append('torch_cpu')
|
|
libraries.append('torch_python')
|
|
if IS_HIP_EXTENSION:
|
|
assert ROCM_VERSION is not None
|
|
libraries.append('amdhip64' if ROCM_VERSION >= (3, 5) else 'hip_hcc')
|
|
libraries.append('c10_hip')
|
|
libraries.append('torch_hip')
|
|
else:
|
|
libraries.append('cudart')
|
|
libraries.append('c10_cuda')
|
|
libraries.append('torch_cuda')
|
|
kwargs['libraries'] = libraries
|
|
|
|
include_dirs = kwargs.get('include_dirs', [])
|
|
|
|
if IS_HIP_EXTENSION:
|
|
build_dir = os.getcwd()
|
|
hipify_result = hipify_python.hipify(
|
|
project_directory=build_dir,
|
|
output_directory=build_dir,
|
|
header_include_dirs=include_dirs,
|
|
includes=[os.path.join(build_dir, '*')], # limit scope to build_dir only
|
|
extra_files=[os.path.abspath(s) for s in sources],
|
|
show_detailed=True,
|
|
is_pytorch_extension=True,
|
|
hipify_extra_files_only=True, # don't hipify everything in includes path
|
|
)
|
|
|
|
hipified_sources = set()
|
|
for source in sources:
|
|
s_abs = os.path.abspath(source)
|
|
hipified_s_abs = (hipify_result[s_abs].hipified_path if (s_abs in hipify_result and
|
|
hipify_result[s_abs].hipified_path is not None) else s_abs)
|
|
# setup() arguments must *always* be /-separated paths relative to the setup.py directory,
|
|
# *never* absolute paths
|
|
hipified_sources.add(os.path.relpath(hipified_s_abs, build_dir))
|
|
|
|
sources = list(hipified_sources)
|
|
|
|
include_dirs += include_paths(cuda=True)
|
|
kwargs['include_dirs'] = include_dirs
|
|
|
|
kwargs['language'] = 'c++'
|
|
|
|
dlink_libraries = kwargs.get('dlink_libraries', [])
|
|
dlink = kwargs.get('dlink', False) or dlink_libraries
|
|
if dlink:
|
|
extra_compile_args = kwargs.get('extra_compile_args', {})
|
|
|
|
extra_compile_args_dlink = extra_compile_args.get('nvcc_dlink', [])
|
|
extra_compile_args_dlink += ['-dlink']
|
|
extra_compile_args_dlink += [f'-L{x}' for x in library_dirs]
|
|
extra_compile_args_dlink += [f'-l{x}' for x in dlink_libraries]
|
|
|
|
if (torch.version.cuda is not None) and TorchVersion(torch.version.cuda) >= '11.2':
|
|
extra_compile_args_dlink += ['-dlto'] # Device Link Time Optimization started from cuda 11.2
|
|
|
|
extra_compile_args['nvcc_dlink'] = extra_compile_args_dlink
|
|
|
|
kwargs['extra_compile_args'] = extra_compile_args
|
|
|
|
return setuptools.Extension(name, sources, *args, **kwargs)
|
|
|
|
|
|
def include_paths(cuda: bool = False) -> List[str]:
|
|
"""
|
|
Get the include paths required to build a C++ or CUDA extension.
|
|
|
|
Args:
|
|
cuda: If `True`, includes CUDA-specific include paths.
|
|
|
|
Returns:
|
|
A list of include path strings.
|
|
"""
|
|
lib_include = os.path.join(_TORCH_PATH, 'include')
|
|
paths = [
|
|
lib_include,
|
|
# Remove this once torch/torch.h is officially no longer supported for C++ extensions.
|
|
os.path.join(lib_include, 'torch', 'csrc', 'api', 'include'),
|
|
# Some internal (old) Torch headers don't properly prefix their includes,
|
|
# so we need to pass -Itorch/lib/include/TH as well.
|
|
os.path.join(lib_include, 'TH'),
|
|
os.path.join(lib_include, 'THC')
|
|
]
|
|
if cuda and IS_HIP_EXTENSION:
|
|
paths.append(os.path.join(lib_include, 'THH'))
|
|
paths.append(_join_rocm_home('include'))
|
|
elif cuda:
|
|
cuda_home_include = _join_cuda_home('include')
|
|
# if we have the Debian/Ubuntu packages for cuda, we get /usr as cuda home.
|
|
# but gcc doesn't like having /usr/include passed explicitly
|
|
if cuda_home_include != '/usr/include':
|
|
paths.append(cuda_home_include)
|
|
if CUDNN_HOME is not None:
|
|
paths.append(os.path.join(CUDNN_HOME, 'include'))
|
|
return paths
|
|
|
|
|
|
def library_paths(cuda: bool = False) -> List[str]:
|
|
"""
|
|
Get the library paths required to build a C++ or CUDA extension.
|
|
|
|
Args:
|
|
cuda: If `True`, includes CUDA-specific library paths.
|
|
|
|
Returns:
|
|
A list of library path strings.
|
|
"""
|
|
# We need to link against libtorch.so
|
|
paths = [TORCH_LIB_PATH]
|
|
|
|
if cuda and IS_HIP_EXTENSION:
|
|
lib_dir = 'lib'
|
|
paths.append(_join_rocm_home(lib_dir))
|
|
if HIP_HOME is not None:
|
|
paths.append(os.path.join(HIP_HOME, 'lib'))
|
|
elif cuda:
|
|
if IS_WINDOWS:
|
|
lib_dir = os.path.join('lib', 'x64')
|
|
else:
|
|
lib_dir = 'lib64'
|
|
if (not os.path.exists(_join_cuda_home(lib_dir)) and
|
|
os.path.exists(_join_cuda_home('lib'))):
|
|
# 64-bit CUDA may be installed in 'lib' (see e.g. gh-16955)
|
|
# Note that it's also possible both don't exist (see
|
|
# _find_cuda_home) - in that case we stay with 'lib64'.
|
|
lib_dir = 'lib'
|
|
|
|
paths.append(_join_cuda_home(lib_dir))
|
|
if CUDNN_HOME is not None:
|
|
paths.append(os.path.join(CUDNN_HOME, lib_dir))
|
|
return paths
|
|
|
|
|
|
def load(name,
|
|
sources: Union[str, List[str]],
|
|
extra_cflags=None,
|
|
extra_cuda_cflags=None,
|
|
extra_ldflags=None,
|
|
extra_include_paths=None,
|
|
build_directory=None,
|
|
verbose=False,
|
|
with_cuda: Optional[bool] = None,
|
|
is_python_module=True,
|
|
is_standalone=False,
|
|
keep_intermediates=True):
|
|
"""
|
|
Load a PyTorch C++ extension just-in-time (JIT).
|
|
|
|
To load an extension, a Ninja build file is emitted, which is used to
|
|
compile the given sources into a dynamic library. This library is
|
|
subsequently loaded into the current Python process as a module and
|
|
returned from this function, ready for use.
|
|
|
|
By default, the directory to which the build file is emitted and the
|
|
resulting library compiled to is ``<tmp>/torch_extensions/<name>``, where
|
|
``<tmp>`` is the temporary folder on the current platform and ``<name>``
|
|
the name of the extension. This location can be overridden in two ways.
|
|
First, if the ``TORCH_EXTENSIONS_DIR`` environment variable is set, it
|
|
replaces ``<tmp>/torch_extensions`` and all extensions will be compiled
|
|
into subfolders of this directory. Second, if the ``build_directory``
|
|
argument to this function is supplied, it overrides the entire path, i.e.
|
|
the library will be compiled into that folder directly.
|
|
|
|
To compile the sources, the default system compiler (``c++``) is used,
|
|
which can be overridden by setting the ``CXX`` environment variable. To pass
|
|
additional arguments to the compilation process, ``extra_cflags`` or
|
|
``extra_ldflags`` can be provided. For example, to compile your extension
|
|
with optimizations, pass ``extra_cflags=['-O3']``. You can also use
|
|
``extra_cflags`` to pass further include directories.
|
|
|
|
CUDA support with mixed compilation is provided. Simply pass CUDA source
|
|
files (``.cu`` or ``.cuh``) along with other sources. Such files will be
|
|
detected and compiled with nvcc rather than the C++ compiler. This includes
|
|
passing the CUDA lib64 directory as a library directory, and linking
|
|
``cudart``. You can pass additional flags to nvcc via
|
|
``extra_cuda_cflags``, just like with ``extra_cflags`` for C++. Various
|
|
heuristics for finding the CUDA install directory are used, which usually
|
|
work fine. If not, setting the ``CUDA_HOME`` environment variable is the
|
|
safest option.
|
|
|
|
Args:
|
|
name: The name of the extension to build. This MUST be the same as the
|
|
name of the pybind11 module!
|
|
sources: A list of relative or absolute paths to C++ source files.
|
|
extra_cflags: optional list of compiler flags to forward to the build.
|
|
extra_cuda_cflags: optional list of compiler flags to forward to nvcc
|
|
when building CUDA sources.
|
|
extra_ldflags: optional list of linker flags to forward to the build.
|
|
extra_include_paths: optional list of include directories to forward
|
|
to the build.
|
|
build_directory: optional path to use as build workspace.
|
|
verbose: If ``True``, turns on verbose logging of load steps.
|
|
with_cuda: Determines whether CUDA headers and libraries are added to
|
|
the build. If set to ``None`` (default), this value is
|
|
automatically determined based on the existence of ``.cu`` or
|
|
``.cuh`` in ``sources``. Set it to `True`` to force CUDA headers
|
|
and libraries to be included.
|
|
is_python_module: If ``True`` (default), imports the produced shared
|
|
library as a Python module. If ``False``, behavior depends on
|
|
``is_standalone``.
|
|
is_standalone: If ``False`` (default) loads the constructed extension
|
|
into the process as a plain dynamic library. If ``True``, build a
|
|
standalone executable.
|
|
|
|
Returns:
|
|
If ``is_python_module`` is ``True``:
|
|
Returns the loaded PyTorch extension as a Python module.
|
|
|
|
If ``is_python_module`` is ``False`` and ``is_standalone`` is ``False``:
|
|
Returns nothing. (The shared library is loaded into the process as
|
|
a side effect.)
|
|
|
|
If ``is_standalone`` is ``True``.
|
|
Return the path to the executable. (On Windows, TORCH_LIB_PATH is
|
|
added to the PATH environment variable as a side effect.)
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> from torch.utils.cpp_extension import load
|
|
>>> module = load(
|
|
... name='extension',
|
|
... sources=['extension.cpp', 'extension_kernel.cu'],
|
|
... extra_cflags=['-O2'],
|
|
... verbose=True)
|
|
"""
|
|
return _jit_compile(
|
|
name,
|
|
[sources] if isinstance(sources, str) else sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory or _get_build_directory(name, verbose),
|
|
verbose,
|
|
with_cuda,
|
|
is_python_module,
|
|
is_standalone,
|
|
keep_intermediates=keep_intermediates)
|
|
|
|
def _get_pybind11_abi_build_flags():
|
|
# Note [Pybind11 ABI constants]
|
|
#
|
|
# Pybind11 before 2.4 used to build an ABI strings using the following pattern:
|
|
# f"__pybind11_internals_v{PYBIND11_INTERNALS_VERSION}{PYBIND11_INTERNALS_KIND}{PYBIND11_BUILD_TYPE}__"
|
|
# Since 2.4 compier type, stdlib and build abi parameters are also encoded like this:
|
|
# f"__pybind11_internals_v{PYBIND11_INTERNALS_VERSION}{PYBIND11_INTERNALS_KIND}{PYBIND11_COMPILER_TYPE}{PYBIND11_STDLIB}{PYBIND11_BUILD_ABI}{PYBIND11_BUILD_TYPE}__"
|
|
#
|
|
# This was done in order to further narrow down the chances of compiler ABI incompatibility
|
|
# that can cause a hard to debug segfaults.
|
|
# For PyTorch extensions we want to relax those restrictions and pass compiler, stdlib and abi properties
|
|
# captured during PyTorch native library compilation in torch/csrc/Module.cpp
|
|
|
|
abi_cflags = []
|
|
for pname in ["COMPILER_TYPE", "STDLIB", "BUILD_ABI"]:
|
|
pval = getattr(torch._C, f"_PYBIND11_{pname}")
|
|
if pval is not None and not IS_WINDOWS:
|
|
abi_cflags.append(f'-DPYBIND11_{pname}=\\"{pval}\\"')
|
|
return abi_cflags
|
|
|
|
def _get_glibcxx_abi_build_flags():
|
|
glibcxx_abi_cflags = ['-D_GLIBCXX_USE_CXX11_ABI=' + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))]
|
|
return glibcxx_abi_cflags
|
|
|
|
def check_compiler_is_gcc(compiler):
|
|
if not IS_LINUX:
|
|
return False
|
|
|
|
env = os.environ.copy()
|
|
env['LC_ALL'] = 'C' # Don't localize output
|
|
try:
|
|
version_string = subprocess.check_output([compiler, '-v'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
|
|
except Exception as e:
|
|
try:
|
|
version_string = subprocess.check_output([compiler, '--version'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
|
|
except Exception as e:
|
|
return False
|
|
# Check for 'gcc' or 'g++' for sccache wrapper
|
|
pattern = re.compile("^COLLECT_GCC=(.*)$", re.MULTILINE)
|
|
results = re.findall(pattern, version_string)
|
|
if len(results) != 1:
|
|
return False
|
|
compiler_path = os.path.realpath(results[0].strip())
|
|
# On RHEL/CentOS c++ is a gcc compiler wrapper
|
|
if os.path.basename(compiler_path) == 'c++' and 'gcc version' in version_string:
|
|
return True
|
|
return False
|
|
|
|
def _check_and_build_extension_h_precompiler_headers(
|
|
extra_cflags,
|
|
extra_include_paths,
|
|
is_standalone=False):
|
|
r'''
|
|
Precompiled Headers(PCH) can pre-build the same headers and reduce build time for pytorch load_inline modules.
|
|
GCC offical manual: https://gcc.gnu.org/onlinedocs/gcc-4.0.4/gcc/Precompiled-Headers.html
|
|
PCH only works when built pch file(header.h.gch) and build target have the same build parameters. So, We need
|
|
add a signature file to record PCH file parameters. If the build parameters(signature) changed, it should rebuild
|
|
PCH file.
|
|
|
|
Note:
|
|
1. Windows and MacOS have different PCH mechanism. We only support Linux currently.
|
|
2. It only works on GCC/G++.
|
|
'''
|
|
if not IS_LINUX:
|
|
return
|
|
|
|
compiler = get_cxx_compiler()
|
|
|
|
b_is_gcc = check_compiler_is_gcc(compiler)
|
|
if b_is_gcc is False:
|
|
return
|
|
|
|
head_file = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h')
|
|
head_file_pch = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.gch')
|
|
head_file_signature = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.sign')
|
|
|
|
def listToString(s):
|
|
# initialize an empty string
|
|
string = ""
|
|
if s is None:
|
|
return string
|
|
|
|
# traverse in the string
|
|
for element in s:
|
|
string += (element + ' ')
|
|
# return string
|
|
return string
|
|
|
|
def format_precompiler_header_cmd(compiler, head_file, head_file_pch, common_cflags, torch_include_dirs, extra_cflags, extra_include_paths):
|
|
return re.sub(
|
|
r"[ \n]+",
|
|
" ",
|
|
f"""
|
|
{compiler} -x c++-header {head_file} -o {head_file_pch} {torch_include_dirs} {extra_include_paths} {extra_cflags} {common_cflags}
|
|
""",
|
|
).strip()
|
|
|
|
def command_to_signature(cmd):
|
|
signature = cmd.replace(' ', '_')
|
|
return signature
|
|
|
|
def check_pch_signature_in_file(file_path, signature):
|
|
b_exist = os.path.isfile(file_path)
|
|
if b_exist is False:
|
|
return False
|
|
|
|
with open(file_path) as file:
|
|
# read all content of a file
|
|
content = file.read()
|
|
# check if string present in a file
|
|
if signature == content:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def _create_if_not_exist(path_dir):
|
|
if not os.path.exists(path_dir):
|
|
try:
|
|
Path(path_dir).mkdir(parents=True, exist_ok=True)
|
|
except OSError as exc: # Guard against race condition
|
|
if exc.errno != errno.EEXIST:
|
|
raise RuntimeError(f"Fail to create path {path_dir}") from exc
|
|
|
|
def write_pch_signature_to_file(file_path, pch_sign):
|
|
_create_if_not_exist(os.path.dirname(file_path))
|
|
with open(file_path, "w") as f:
|
|
f.write(pch_sign)
|
|
f.close()
|
|
|
|
def build_precompile_header(pch_cmd):
|
|
try:
|
|
subprocess.check_output(pch_cmd, shell=True, stderr=subprocess.STDOUT)
|
|
except subprocess.CalledProcessError as e:
|
|
raise RuntimeError(f"Compile PreCompile Header fail, command: {pch_cmd}") from e
|
|
|
|
extra_cflags_str = listToString(extra_cflags)
|
|
extra_include_paths_str = " ".join(
|
|
[f"-I{include}" for include in extra_include_paths] if extra_include_paths else []
|
|
)
|
|
|
|
lib_include = os.path.join(_TORCH_PATH, 'include')
|
|
torch_include_dirs = [
|
|
f"-I {lib_include}",
|
|
# Python.h
|
|
"-I {}".format(sysconfig.get_path("include")),
|
|
# torch/all.h
|
|
"-I {}".format(os.path.join(lib_include, 'torch', 'csrc', 'api', 'include')),
|
|
]
|
|
|
|
torch_include_dirs_str = listToString(torch_include_dirs)
|
|
|
|
common_cflags = []
|
|
if not is_standalone:
|
|
common_cflags += ['-DTORCH_API_INCLUDE_EXTENSION_H']
|
|
|
|
common_cflags += ['-std=c++17', '-fPIC']
|
|
common_cflags += [f"{x}" for x in _get_pybind11_abi_build_flags()]
|
|
common_cflags += [f"{x}" for x in _get_glibcxx_abi_build_flags()]
|
|
common_cflags_str = listToString(common_cflags)
|
|
|
|
pch_cmd = format_precompiler_header_cmd(compiler, head_file, head_file_pch, common_cflags_str, torch_include_dirs_str, extra_cflags_str, extra_include_paths_str)
|
|
pch_sign = command_to_signature(pch_cmd)
|
|
|
|
if os.path.isfile(head_file_pch) is not True:
|
|
build_precompile_header(pch_cmd)
|
|
write_pch_signature_to_file(head_file_signature, pch_sign)
|
|
else:
|
|
b_same_sign = check_pch_signature_in_file(head_file_signature, pch_sign)
|
|
if b_same_sign is False:
|
|
build_precompile_header(pch_cmd)
|
|
write_pch_signature_to_file(head_file_signature, pch_sign)
|
|
|
|
def remove_extension_h_precompiler_headers():
|
|
def _remove_if_file_exists(path_file):
|
|
if os.path.exists(path_file):
|
|
os.remove(path_file)
|
|
|
|
head_file_pch = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.gch')
|
|
head_file_signature = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.sign')
|
|
|
|
_remove_if_file_exists(head_file_pch)
|
|
_remove_if_file_exists(head_file_signature)
|
|
|
|
def load_inline(name,
|
|
cpp_sources,
|
|
cuda_sources=None,
|
|
functions=None,
|
|
extra_cflags=None,
|
|
extra_cuda_cflags=None,
|
|
extra_ldflags=None,
|
|
extra_include_paths=None,
|
|
build_directory=None,
|
|
verbose=False,
|
|
with_cuda=None,
|
|
is_python_module=True,
|
|
with_pytorch_error_handling=True,
|
|
keep_intermediates=True,
|
|
use_pch=False):
|
|
r'''
|
|
Load a PyTorch C++ extension just-in-time (JIT) from string sources.
|
|
|
|
This function behaves exactly like :func:`load`, but takes its sources as
|
|
strings rather than filenames. These strings are stored to files in the
|
|
build directory, after which the behavior of :func:`load_inline` is
|
|
identical to :func:`load`.
|
|
|
|
See `the
|
|
tests <https://github.com/pytorch/pytorch/blob/master/test/test_cpp_extensions_jit.py>`_
|
|
for good examples of using this function.
|
|
|
|
Sources may omit two required parts of a typical non-inline C++ extension:
|
|
the necessary header includes, as well as the (pybind11) binding code. More
|
|
precisely, strings passed to ``cpp_sources`` are first concatenated into a
|
|
single ``.cpp`` file. This file is then prepended with ``#include
|
|
<torch/extension.h>``.
|
|
|
|
Furthermore, if the ``functions`` argument is supplied, bindings will be
|
|
automatically generated for each function specified. ``functions`` can
|
|
either be a list of function names, or a dictionary mapping from function
|
|
names to docstrings. If a list is given, the name of each function is used
|
|
as its docstring.
|
|
|
|
The sources in ``cuda_sources`` are concatenated into a separate ``.cu``
|
|
file and prepended with ``torch/types.h``, ``cuda.h`` and
|
|
``cuda_runtime.h`` includes. The ``.cpp`` and ``.cu`` files are compiled
|
|
separately, but ultimately linked into a single library. Note that no
|
|
bindings are generated for functions in ``cuda_sources`` per se. To bind
|
|
to a CUDA kernel, you must create a C++ function that calls it, and either
|
|
declare or define this C++ function in one of the ``cpp_sources`` (and
|
|
include its name in ``functions``).
|
|
|
|
See :func:`load` for a description of arguments omitted below.
|
|
|
|
Args:
|
|
cpp_sources: A string, or list of strings, containing C++ source code.
|
|
cuda_sources: A string, or list of strings, containing CUDA source code.
|
|
functions: A list of function names for which to generate function
|
|
bindings. If a dictionary is given, it should map function names to
|
|
docstrings (which are otherwise just the function names).
|
|
with_cuda: Determines whether CUDA headers and libraries are added to
|
|
the build. If set to ``None`` (default), this value is
|
|
automatically determined based on whether ``cuda_sources`` is
|
|
provided. Set it to ``True`` to force CUDA headers
|
|
and libraries to be included.
|
|
with_pytorch_error_handling: Determines whether pytorch error and
|
|
warning macros are handled by pytorch instead of pybind. To do
|
|
this, each function ``foo`` is called via an intermediary ``_safe_foo``
|
|
function. This redirection might cause issues in obscure cases
|
|
of cpp. This flag should be set to ``False`` when this redirect
|
|
causes issues.
|
|
|
|
Example:
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
|
|
>>> from torch.utils.cpp_extension import load_inline
|
|
>>> source = """
|
|
at::Tensor sin_add(at::Tensor x, at::Tensor y) {
|
|
return x.sin() + y.sin();
|
|
}
|
|
"""
|
|
>>> module = load_inline(name='inline_extension',
|
|
... cpp_sources=[source],
|
|
... functions=['sin_add'])
|
|
|
|
.. note::
|
|
By default, the Ninja backend uses #CPUS + 2 workers to build the
|
|
extension. This may use up too many resources on some systems. One
|
|
can control the number of workers by setting the `MAX_JOBS` environment
|
|
variable to a non-negative number.
|
|
'''
|
|
build_directory = build_directory or _get_build_directory(name, verbose)
|
|
|
|
if isinstance(cpp_sources, str):
|
|
cpp_sources = [cpp_sources]
|
|
cuda_sources = cuda_sources or []
|
|
if isinstance(cuda_sources, str):
|
|
cuda_sources = [cuda_sources]
|
|
|
|
cpp_sources.insert(0, '#include <torch/extension.h>')
|
|
|
|
if use_pch is True:
|
|
# Using PreCompile Header('torch/extension.h') to reduce compile time.
|
|
_check_and_build_extension_h_precompiler_headers(extra_cflags, extra_include_paths)
|
|
else:
|
|
remove_extension_h_precompiler_headers()
|
|
|
|
# If `functions` is supplied, we create the pybind11 bindings for the user.
|
|
# Here, `functions` is (or becomes, after some processing) a map from
|
|
# function names to function docstrings.
|
|
if functions is not None:
|
|
module_def = []
|
|
module_def.append('PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {')
|
|
if isinstance(functions, str):
|
|
functions = [functions]
|
|
if isinstance(functions, list):
|
|
# Make the function docstring the same as the function name.
|
|
functions = {f: f for f in functions}
|
|
elif not isinstance(functions, dict):
|
|
raise ValueError(f"Expected 'functions' to be a list or dict, but was {type(functions)}")
|
|
for function_name, docstring in functions.items():
|
|
if with_pytorch_error_handling:
|
|
module_def.append(f'm.def("{function_name}", torch::wrap_pybind_function({function_name}), "{docstring}");')
|
|
else:
|
|
module_def.append(f'm.def("{function_name}", {function_name}, "{docstring}");')
|
|
module_def.append('}')
|
|
cpp_sources += module_def
|
|
|
|
cpp_source_path = os.path.join(build_directory, 'main.cpp')
|
|
_maybe_write(cpp_source_path, "\n".join(cpp_sources))
|
|
|
|
sources = [cpp_source_path]
|
|
|
|
if cuda_sources:
|
|
cuda_sources.insert(0, '#include <torch/types.h>')
|
|
cuda_sources.insert(1, '#include <cuda.h>')
|
|
cuda_sources.insert(2, '#include <cuda_runtime.h>')
|
|
|
|
cuda_source_path = os.path.join(build_directory, 'cuda.cu')
|
|
_maybe_write(cuda_source_path, "\n".join(cuda_sources))
|
|
|
|
sources.append(cuda_source_path)
|
|
|
|
return _jit_compile(
|
|
name,
|
|
sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory,
|
|
verbose,
|
|
with_cuda,
|
|
is_python_module,
|
|
is_standalone=False,
|
|
keep_intermediates=keep_intermediates)
|
|
|
|
|
|
def _jit_compile(name,
|
|
sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory: str,
|
|
verbose: bool,
|
|
with_cuda: Optional[bool],
|
|
is_python_module,
|
|
is_standalone,
|
|
keep_intermediates=True) -> None:
|
|
if is_python_module and is_standalone:
|
|
raise ValueError("`is_python_module` and `is_standalone` are mutually exclusive.")
|
|
|
|
if with_cuda is None:
|
|
with_cuda = any(map(_is_cuda_file, sources))
|
|
with_cudnn = any('cudnn' in f for f in extra_ldflags or [])
|
|
old_version = JIT_EXTENSION_VERSIONER.get_version(name)
|
|
version = JIT_EXTENSION_VERSIONER.bump_version_if_changed(
|
|
name,
|
|
sources,
|
|
build_arguments=[extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths],
|
|
build_directory=build_directory,
|
|
with_cuda=with_cuda,
|
|
is_python_module=is_python_module,
|
|
is_standalone=is_standalone,
|
|
)
|
|
if version > 0:
|
|
if version != old_version and verbose:
|
|
print(f'The input conditions for extension module {name} have changed. ' +
|
|
f'Bumping to version {version} and re-building as {name}_v{version}...',
|
|
file=sys.stderr)
|
|
name = f'{name}_v{version}'
|
|
|
|
if version != old_version:
|
|
baton = FileBaton(os.path.join(build_directory, 'lock'))
|
|
if baton.try_acquire():
|
|
try:
|
|
with GeneratedFileCleaner(keep_intermediates=keep_intermediates) as clean_ctx:
|
|
if IS_HIP_EXTENSION and (with_cuda or with_cudnn):
|
|
hipify_result = hipify_python.hipify(
|
|
project_directory=build_directory,
|
|
output_directory=build_directory,
|
|
header_include_dirs=(extra_include_paths if extra_include_paths is not None else []),
|
|
extra_files=[os.path.abspath(s) for s in sources],
|
|
ignores=[_join_rocm_home('*'), os.path.join(_TORCH_PATH, '*')], # no need to hipify ROCm or PyTorch headers
|
|
show_detailed=verbose,
|
|
show_progress=verbose,
|
|
is_pytorch_extension=True,
|
|
clean_ctx=clean_ctx
|
|
)
|
|
|
|
hipified_sources = set()
|
|
for source in sources:
|
|
s_abs = os.path.abspath(source)
|
|
hipified_sources.add(hipify_result[s_abs].hipified_path if s_abs in hipify_result else s_abs)
|
|
|
|
sources = list(hipified_sources)
|
|
|
|
_write_ninja_file_and_build_library(
|
|
name=name,
|
|
sources=sources,
|
|
extra_cflags=extra_cflags or [],
|
|
extra_cuda_cflags=extra_cuda_cflags or [],
|
|
extra_ldflags=extra_ldflags or [],
|
|
extra_include_paths=extra_include_paths or [],
|
|
build_directory=build_directory,
|
|
verbose=verbose,
|
|
with_cuda=with_cuda,
|
|
is_standalone=is_standalone)
|
|
finally:
|
|
baton.release()
|
|
else:
|
|
baton.wait()
|
|
elif verbose:
|
|
print('No modifications detected for re-loaded extension '
|
|
f'module {name}, skipping build step...',
|
|
file=sys.stderr)
|
|
|
|
if verbose:
|
|
print(f'Loading extension module {name}...', file=sys.stderr)
|
|
|
|
if is_standalone:
|
|
return _get_exec_path(name, build_directory)
|
|
|
|
return _import_module_from_library(name, build_directory, is_python_module)
|
|
|
|
|
|
def _write_ninja_file_and_compile_objects(
|
|
sources: List[str],
|
|
objects,
|
|
cflags,
|
|
post_cflags,
|
|
cuda_cflags,
|
|
cuda_post_cflags,
|
|
cuda_dlink_post_cflags,
|
|
build_directory: str,
|
|
verbose: bool,
|
|
with_cuda: Optional[bool]) -> None:
|
|
verify_ninja_availability()
|
|
|
|
compiler = get_cxx_compiler()
|
|
|
|
get_compiler_abi_compatibility_and_version(compiler)
|
|
if with_cuda is None:
|
|
with_cuda = any(map(_is_cuda_file, sources))
|
|
build_file_path = os.path.join(build_directory, 'build.ninja')
|
|
if verbose:
|
|
print(f'Emitting ninja build file {build_file_path}...', file=sys.stderr)
|
|
_write_ninja_file(
|
|
path=build_file_path,
|
|
cflags=cflags,
|
|
post_cflags=post_cflags,
|
|
cuda_cflags=cuda_cflags,
|
|
cuda_post_cflags=cuda_post_cflags,
|
|
cuda_dlink_post_cflags=cuda_dlink_post_cflags,
|
|
sources=sources,
|
|
objects=objects,
|
|
ldflags=None,
|
|
library_target=None,
|
|
with_cuda=with_cuda)
|
|
if verbose:
|
|
print('Compiling objects...', file=sys.stderr)
|
|
_run_ninja_build(
|
|
build_directory,
|
|
verbose,
|
|
# It would be better if we could tell users the name of the extension
|
|
# that failed to build but there isn't a good way to get it here.
|
|
error_prefix='Error compiling objects for extension')
|
|
|
|
|
|
def _write_ninja_file_and_build_library(
|
|
name,
|
|
sources: List[str],
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
build_directory: str,
|
|
verbose: bool,
|
|
with_cuda: Optional[bool],
|
|
is_standalone: bool = False) -> None:
|
|
verify_ninja_availability()
|
|
|
|
compiler = get_cxx_compiler()
|
|
|
|
get_compiler_abi_compatibility_and_version(compiler)
|
|
if with_cuda is None:
|
|
with_cuda = any(map(_is_cuda_file, sources))
|
|
extra_ldflags = _prepare_ldflags(
|
|
extra_ldflags or [],
|
|
with_cuda,
|
|
verbose,
|
|
is_standalone)
|
|
build_file_path = os.path.join(build_directory, 'build.ninja')
|
|
if verbose:
|
|
print(f'Emitting ninja build file {build_file_path}...', file=sys.stderr)
|
|
# NOTE: Emitting a new ninja build file does not cause re-compilation if
|
|
# the sources did not change, so it's ok to re-emit (and it's fast).
|
|
_write_ninja_file_to_build_library(
|
|
path=build_file_path,
|
|
name=name,
|
|
sources=sources,
|
|
extra_cflags=extra_cflags or [],
|
|
extra_cuda_cflags=extra_cuda_cflags or [],
|
|
extra_ldflags=extra_ldflags or [],
|
|
extra_include_paths=extra_include_paths or [],
|
|
with_cuda=with_cuda,
|
|
is_standalone=is_standalone)
|
|
|
|
if verbose:
|
|
print(f'Building extension module {name}...', file=sys.stderr)
|
|
_run_ninja_build(
|
|
build_directory,
|
|
verbose,
|
|
error_prefix=f"Error building extension '{name}'")
|
|
|
|
|
|
def is_ninja_available():
|
|
"""Return ``True`` if the `ninja <https://ninja-build.org/>`_ build system is available on the system, ``False`` otherwise."""
|
|
try:
|
|
subprocess.check_output('ninja --version'.split())
|
|
except Exception:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
|
|
def verify_ninja_availability():
|
|
"""Raise ``RuntimeError`` if `ninja <https://ninja-build.org/>`_ build system is not available on the system, does nothing otherwise."""
|
|
if not is_ninja_available():
|
|
raise RuntimeError("Ninja is required to load C++ extensions")
|
|
|
|
|
|
def _prepare_ldflags(extra_ldflags, with_cuda, verbose, is_standalone):
|
|
if IS_WINDOWS:
|
|
python_lib_path = os.path.join(sys.base_exec_prefix, 'libs')
|
|
|
|
extra_ldflags.append('c10.lib')
|
|
if with_cuda:
|
|
extra_ldflags.append('c10_cuda.lib')
|
|
extra_ldflags.append('torch_cpu.lib')
|
|
if with_cuda:
|
|
extra_ldflags.append('torch_cuda.lib')
|
|
# /INCLUDE is used to ensure torch_cuda is linked against in a project that relies on it.
|
|
# Related issue: https://github.com/pytorch/pytorch/issues/31611
|
|
extra_ldflags.append('-INCLUDE:?warp_size@cuda@at@@YAHXZ')
|
|
extra_ldflags.append('torch.lib')
|
|
extra_ldflags.append(f'/LIBPATH:{TORCH_LIB_PATH}')
|
|
if not is_standalone:
|
|
extra_ldflags.append('torch_python.lib')
|
|
extra_ldflags.append(f'/LIBPATH:{python_lib_path}')
|
|
|
|
else:
|
|
extra_ldflags.append(f'-L{TORCH_LIB_PATH}')
|
|
extra_ldflags.append('-lc10')
|
|
if with_cuda:
|
|
extra_ldflags.append('-lc10_hip' if IS_HIP_EXTENSION else '-lc10_cuda')
|
|
extra_ldflags.append('-ltorch_cpu')
|
|
if with_cuda:
|
|
extra_ldflags.append('-ltorch_hip' if IS_HIP_EXTENSION else '-ltorch_cuda')
|
|
extra_ldflags.append('-ltorch')
|
|
if not is_standalone:
|
|
extra_ldflags.append('-ltorch_python')
|
|
|
|
if is_standalone and "TBB" in torch.__config__.parallel_info():
|
|
extra_ldflags.append('-ltbb')
|
|
|
|
if is_standalone:
|
|
extra_ldflags.append(f"-Wl,-rpath,{TORCH_LIB_PATH}")
|
|
|
|
if with_cuda:
|
|
if verbose:
|
|
print('Detected CUDA files, patching ldflags', file=sys.stderr)
|
|
if IS_WINDOWS:
|
|
extra_ldflags.append(f'/LIBPATH:{_join_cuda_home("lib", "x64")}')
|
|
extra_ldflags.append('cudart.lib')
|
|
if CUDNN_HOME is not None:
|
|
extra_ldflags.append(f'/LIBPATH:{os.path.join(CUDNN_HOME, "lib", "x64")}')
|
|
elif not IS_HIP_EXTENSION:
|
|
extra_lib_dir = "lib64"
|
|
if (not os.path.exists(_join_cuda_home(extra_lib_dir)) and
|
|
os.path.exists(_join_cuda_home("lib"))):
|
|
# 64-bit CUDA may be installed in "lib"
|
|
# Note that it's also possible both don't exist (see _find_cuda_home) - in that case we stay with "lib64"
|
|
extra_lib_dir = "lib"
|
|
extra_ldflags.append(f'-L{_join_cuda_home(extra_lib_dir)}')
|
|
extra_ldflags.append('-lcudart')
|
|
if CUDNN_HOME is not None:
|
|
extra_ldflags.append(f'-L{os.path.join(CUDNN_HOME, "lib64")}')
|
|
elif IS_HIP_EXTENSION:
|
|
assert ROCM_VERSION is not None
|
|
extra_ldflags.append(f'-L{_join_rocm_home("lib")}')
|
|
extra_ldflags.append('-lamdhip64' if ROCM_VERSION >= (3, 5) else '-lhip_hcc')
|
|
return extra_ldflags
|
|
|
|
|
|
def _get_cuda_arch_flags(cflags: Optional[List[str]] = None) -> List[str]:
|
|
"""
|
|
Determine CUDA arch flags to use.
|
|
|
|
For an arch, say "6.1", the added compile flag will be
|
|
``-gencode=arch=compute_61,code=sm_61``.
|
|
For an added "+PTX", an additional
|
|
``-gencode=arch=compute_xx,code=compute_xx`` is added.
|
|
|
|
See select_compute_arch.cmake for corresponding named and supported arches
|
|
when building with CMake.
|
|
"""
|
|
# If cflags is given, there may already be user-provided arch flags in it
|
|
# (from `extra_compile_args`)
|
|
if cflags is not None:
|
|
for flag in cflags:
|
|
if 'TORCH_EXTENSION_NAME' in flag:
|
|
continue
|
|
if 'arch' in flag:
|
|
return []
|
|
|
|
# Note: keep combined names ("arch1+arch2") above single names, otherwise
|
|
# string replacement may not do the right thing
|
|
named_arches = collections.OrderedDict([
|
|
('Kepler+Tesla', '3.7'),
|
|
('Kepler', '3.5+PTX'),
|
|
('Maxwell+Tegra', '5.3'),
|
|
('Maxwell', '5.0;5.2+PTX'),
|
|
('Pascal', '6.0;6.1+PTX'),
|
|
('Volta+Tegra', '7.2'),
|
|
('Volta', '7.0+PTX'),
|
|
('Turing', '7.5+PTX'),
|
|
('Ampere+Tegra', '8.7'),
|
|
('Ampere', '8.0;8.6+PTX'),
|
|
('Ada', '8.9+PTX'),
|
|
('Hopper', '9.0+PTX'),
|
|
])
|
|
|
|
supported_arches = ['3.5', '3.7', '5.0', '5.2', '5.3', '6.0', '6.1', '6.2',
|
|
'7.0', '7.2', '7.5', '8.0', '8.6', '8.7', '8.9', '9.0', '9.0a']
|
|
valid_arch_strings = supported_arches + [s + "+PTX" for s in supported_arches]
|
|
|
|
# The default is sm_30 for CUDA 9.x and 10.x
|
|
# First check for an env var (same as used by the main setup.py)
|
|
# Can be one or more architectures, e.g. "6.1" or "3.5;5.2;6.0;6.1;7.0+PTX"
|
|
# See cmake/Modules_CUDA_fix/upstream/FindCUDA/select_compute_arch.cmake
|
|
_arch_list = os.environ.get('TORCH_CUDA_ARCH_LIST', None)
|
|
|
|
# If not given, determine what's best for the GPU / CUDA version that can be found
|
|
if not _arch_list:
|
|
warnings.warn(
|
|
"TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. \n"
|
|
"If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].")
|
|
arch_list = []
|
|
# the assumption is that the extension should run on any of the currently visible cards,
|
|
# which could be of different types - therefore all archs for visible cards should be included
|
|
for i in range(torch.cuda.device_count()):
|
|
capability = torch.cuda.get_device_capability(i)
|
|
supported_sm = [int(arch.split('_')[1])
|
|
for arch in torch.cuda.get_arch_list() if 'sm_' in arch]
|
|
max_supported_sm = max((sm // 10, sm % 10) for sm in supported_sm)
|
|
# Capability of the device may be higher than what's supported by the user's
|
|
# NVCC, causing compilation error. User's NVCC is expected to match the one
|
|
# used to build pytorch, so we use the maximum supported capability of pytorch
|
|
# to clamp the capability.
|
|
capability = min(max_supported_sm, capability)
|
|
arch = f'{capability[0]}.{capability[1]}'
|
|
if arch not in arch_list:
|
|
arch_list.append(arch)
|
|
arch_list = sorted(arch_list)
|
|
arch_list[-1] += '+PTX'
|
|
else:
|
|
# Deal with lists that are ' ' separated (only deal with ';' after)
|
|
_arch_list = _arch_list.replace(' ', ';')
|
|
# Expand named arches
|
|
for named_arch, archval in named_arches.items():
|
|
_arch_list = _arch_list.replace(named_arch, archval)
|
|
|
|
arch_list = _arch_list.split(';')
|
|
|
|
flags = []
|
|
for arch in arch_list:
|
|
if arch not in valid_arch_strings:
|
|
raise ValueError(f"Unknown CUDA arch ({arch}) or GPU not supported")
|
|
else:
|
|
num = arch[0] + arch[2:].split("+")[0]
|
|
flags.append(f'-gencode=arch=compute_{num},code=sm_{num}')
|
|
if arch.endswith('+PTX'):
|
|
flags.append(f'-gencode=arch=compute_{num},code=compute_{num}')
|
|
|
|
return sorted(set(flags))
|
|
|
|
|
|
def _get_rocm_arch_flags(cflags: Optional[List[str]] = None) -> List[str]:
|
|
# If cflags is given, there may already be user-provided arch flags in it
|
|
# (from `extra_compile_args`)
|
|
if cflags is not None:
|
|
for flag in cflags:
|
|
if 'amdgpu-target' in flag or 'offload-arch' in flag:
|
|
return ['-fno-gpu-rdc']
|
|
# Use same defaults as used for building PyTorch
|
|
# Allow env var to override, just like during initial cmake build.
|
|
_archs = os.environ.get('PYTORCH_ROCM_ARCH', None)
|
|
if not _archs:
|
|
archFlags = torch._C._cuda_getArchFlags()
|
|
if archFlags:
|
|
archs = archFlags.split()
|
|
else:
|
|
archs = []
|
|
else:
|
|
archs = _archs.replace(' ', ';').split(';')
|
|
flags = [f'--offload-arch={arch}' for arch in archs]
|
|
flags += ['-fno-gpu-rdc']
|
|
return flags
|
|
|
|
def _get_build_directory(name: str, verbose: bool) -> str:
|
|
root_extensions_directory = os.environ.get('TORCH_EXTENSIONS_DIR')
|
|
if root_extensions_directory is None:
|
|
root_extensions_directory = get_default_build_root()
|
|
cu_str = ('cpu' if torch.version.cuda is None else
|
|
f'cu{torch.version.cuda.replace(".", "")}') # type: ignore[attr-defined]
|
|
python_version = f'py{sys.version_info.major}{sys.version_info.minor}'
|
|
build_folder = f'{python_version}_{cu_str}'
|
|
|
|
root_extensions_directory = os.path.join(
|
|
root_extensions_directory, build_folder)
|
|
|
|
if verbose:
|
|
print(f'Using {root_extensions_directory} as PyTorch extensions root...', file=sys.stderr)
|
|
|
|
build_directory = os.path.join(root_extensions_directory, name)
|
|
if not os.path.exists(build_directory):
|
|
if verbose:
|
|
print(f'Creating extension directory {build_directory}...', file=sys.stderr)
|
|
# This is like mkdir -p, i.e. will also create parent directories.
|
|
os.makedirs(build_directory, exist_ok=True)
|
|
|
|
return build_directory
|
|
|
|
|
|
def _get_num_workers(verbose: bool) -> Optional[int]:
|
|
max_jobs = os.environ.get('MAX_JOBS')
|
|
if max_jobs is not None and max_jobs.isdigit():
|
|
if verbose:
|
|
print(f'Using envvar MAX_JOBS ({max_jobs}) as the number of workers...',
|
|
file=sys.stderr)
|
|
return int(max_jobs)
|
|
if verbose:
|
|
print('Allowing ninja to set a default number of workers... '
|
|
'(overridable by setting the environment variable MAX_JOBS=N)',
|
|
file=sys.stderr)
|
|
return None
|
|
|
|
|
|
def _run_ninja_build(build_directory: str, verbose: bool, error_prefix: str) -> None:
|
|
command = ['ninja', '-v']
|
|
num_workers = _get_num_workers(verbose)
|
|
if num_workers is not None:
|
|
command.extend(['-j', str(num_workers)])
|
|
env = os.environ.copy()
|
|
# Try to activate the vc env for the users
|
|
if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' not in env:
|
|
from setuptools import distutils
|
|
|
|
plat_name = distutils.util.get_platform()
|
|
plat_spec = PLAT_TO_VCVARS[plat_name]
|
|
|
|
vc_env = distutils._msvccompiler._get_vc_env(plat_spec)
|
|
vc_env = {k.upper(): v for k, v in vc_env.items()}
|
|
for k, v in env.items():
|
|
uk = k.upper()
|
|
if uk not in vc_env:
|
|
vc_env[uk] = v
|
|
env = vc_env
|
|
try:
|
|
sys.stdout.flush()
|
|
sys.stderr.flush()
|
|
# Warning: don't pass stdout=None to subprocess.run to get output.
|
|
# subprocess.run assumes that sys.__stdout__ has not been modified and
|
|
# attempts to write to it by default. However, when we call _run_ninja_build
|
|
# from ahead-of-time cpp extensions, the following happens:
|
|
# 1) If the stdout encoding is not utf-8, setuptools detachs __stdout__.
|
|
# https://github.com/pypa/setuptools/blob/7e97def47723303fafabe48b22168bbc11bb4821/setuptools/dist.py#L1110
|
|
# (it probably shouldn't do this)
|
|
# 2) subprocess.run (on POSIX, with no stdout override) relies on
|
|
# __stdout__ not being detached:
|
|
# https://github.com/python/cpython/blob/c352e6c7446c894b13643f538db312092b351789/Lib/subprocess.py#L1214
|
|
# To work around this, we pass in the fileno directly and hope that
|
|
# it is valid.
|
|
stdout_fileno = 1
|
|
subprocess.run(
|
|
command,
|
|
stdout=stdout_fileno if verbose else subprocess.PIPE,
|
|
stderr=subprocess.STDOUT,
|
|
cwd=build_directory,
|
|
check=True,
|
|
env=env)
|
|
except subprocess.CalledProcessError as e:
|
|
# Python 2 and 3 compatible way of getting the error object.
|
|
_, error, _ = sys.exc_info()
|
|
# error.output contains the stdout and stderr of the build attempt.
|
|
message = error_prefix
|
|
# `error` is a CalledProcessError (which has an `output`) attribute, but
|
|
# mypy thinks it's Optional[BaseException] and doesn't narrow
|
|
if hasattr(error, 'output') and error.output: # type: ignore[union-attr]
|
|
message += f": {error.output.decode(*SUBPROCESS_DECODE_ARGS)}" # type: ignore[union-attr]
|
|
raise RuntimeError(message) from e
|
|
|
|
|
|
def _get_exec_path(module_name, path):
|
|
if IS_WINDOWS and TORCH_LIB_PATH not in os.getenv('PATH', '').split(';'):
|
|
torch_lib_in_path = any(
|
|
os.path.exists(p) and os.path.samefile(p, TORCH_LIB_PATH)
|
|
for p in os.getenv('PATH', '').split(';')
|
|
)
|
|
if not torch_lib_in_path:
|
|
os.environ['PATH'] = f"{TORCH_LIB_PATH};{os.getenv('PATH', '')}"
|
|
return os.path.join(path, f'{module_name}{EXEC_EXT}')
|
|
|
|
|
|
def _import_module_from_library(module_name, path, is_python_module):
|
|
filepath = os.path.join(path, f"{module_name}{LIB_EXT}")
|
|
if is_python_module:
|
|
# https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
|
|
spec = importlib.util.spec_from_file_location(module_name, filepath)
|
|
assert spec is not None
|
|
module = importlib.util.module_from_spec(spec)
|
|
assert isinstance(spec.loader, importlib.abc.Loader)
|
|
spec.loader.exec_module(module)
|
|
return module
|
|
else:
|
|
torch.ops.load_library(filepath)
|
|
|
|
|
|
def _write_ninja_file_to_build_library(path,
|
|
name,
|
|
sources,
|
|
extra_cflags,
|
|
extra_cuda_cflags,
|
|
extra_ldflags,
|
|
extra_include_paths,
|
|
with_cuda,
|
|
is_standalone) -> None:
|
|
extra_cflags = [flag.strip() for flag in extra_cflags]
|
|
extra_cuda_cflags = [flag.strip() for flag in extra_cuda_cflags]
|
|
extra_ldflags = [flag.strip() for flag in extra_ldflags]
|
|
extra_include_paths = [flag.strip() for flag in extra_include_paths]
|
|
|
|
# Turn into absolute paths so we can emit them into the ninja build
|
|
# file wherever it is.
|
|
user_includes = [os.path.abspath(file) for file in extra_include_paths]
|
|
|
|
# include_paths() gives us the location of torch/extension.h
|
|
system_includes = include_paths(with_cuda)
|
|
# sysconfig.get_path('include') gives us the location of Python.h
|
|
# Explicitly specify 'posix_prefix' scheme on non-Windows platforms to workaround error on some MacOS
|
|
# installations where default `get_path` points to non-existing `/Library/Python/M.m/include` folder
|
|
python_include_path = sysconfig.get_path('include', scheme='nt' if IS_WINDOWS else 'posix_prefix')
|
|
if python_include_path is not None:
|
|
system_includes.append(python_include_path)
|
|
|
|
# Windows does not understand `-isystem`.
|
|
if IS_WINDOWS:
|
|
user_includes += system_includes
|
|
system_includes.clear()
|
|
|
|
common_cflags = []
|
|
if not is_standalone:
|
|
common_cflags.append(f'-DTORCH_EXTENSION_NAME={name}')
|
|
common_cflags.append('-DTORCH_API_INCLUDE_EXTENSION_H')
|
|
|
|
common_cflags += [f"{x}" for x in _get_pybind11_abi_build_flags()]
|
|
|
|
common_cflags += [f'-I{include}' for include in user_includes]
|
|
common_cflags += [f'-isystem {include}' for include in system_includes]
|
|
|
|
common_cflags += [f"{x}" for x in _get_glibcxx_abi_build_flags()]
|
|
|
|
if IS_WINDOWS:
|
|
cflags = common_cflags + COMMON_MSVC_FLAGS + ['/std:c++17'] + extra_cflags
|
|
cflags = _nt_quote_args(cflags)
|
|
else:
|
|
cflags = common_cflags + ['-fPIC', '-std=c++17'] + extra_cflags
|
|
|
|
if with_cuda and IS_HIP_EXTENSION:
|
|
cuda_flags = ['-DWITH_HIP'] + cflags + COMMON_HIP_FLAGS + COMMON_HIPCC_FLAGS
|
|
cuda_flags += extra_cuda_cflags
|
|
cuda_flags += _get_rocm_arch_flags(cuda_flags)
|
|
elif with_cuda:
|
|
cuda_flags = common_cflags + COMMON_NVCC_FLAGS + _get_cuda_arch_flags()
|
|
if IS_WINDOWS:
|
|
for flag in COMMON_MSVC_FLAGS:
|
|
cuda_flags = ['-Xcompiler', flag] + cuda_flags
|
|
for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
|
|
cuda_flags = ['-Xcudafe', '--diag_suppress=' + ignore_warning] + cuda_flags
|
|
cuda_flags = cuda_flags + ['-std=c++17']
|
|
cuda_flags = _nt_quote_args(cuda_flags)
|
|
cuda_flags += _nt_quote_args(extra_cuda_cflags)
|
|
else:
|
|
cuda_flags += ['--compiler-options', "'-fPIC'"]
|
|
cuda_flags += extra_cuda_cflags
|
|
if not any(flag.startswith('-std=') for flag in cuda_flags):
|
|
cuda_flags.append('-std=c++17')
|
|
cc_env = os.getenv("CC")
|
|
if cc_env is not None:
|
|
cuda_flags = ['-ccbin', cc_env] + cuda_flags
|
|
else:
|
|
cuda_flags = None
|
|
|
|
def object_file_path(source_file: str) -> str:
|
|
# '/path/to/file.cpp' -> 'file'
|
|
file_name = os.path.splitext(os.path.basename(source_file))[0]
|
|
if _is_cuda_file(source_file) and with_cuda:
|
|
# Use a different object filename in case a C++ and CUDA file have
|
|
# the same filename but different extension (.cpp vs. .cu).
|
|
target = f'{file_name}.cuda.o'
|
|
else:
|
|
target = f'{file_name}.o'
|
|
return target
|
|
|
|
objects = [object_file_path(src) for src in sources]
|
|
ldflags = ([] if is_standalone else [SHARED_FLAG]) + extra_ldflags
|
|
|
|
# The darwin linker needs explicit consent to ignore unresolved symbols.
|
|
if IS_MACOS:
|
|
ldflags.append('-undefined dynamic_lookup')
|
|
elif IS_WINDOWS:
|
|
ldflags = _nt_quote_args(ldflags)
|
|
|
|
ext = EXEC_EXT if is_standalone else LIB_EXT
|
|
library_target = f'{name}{ext}'
|
|
|
|
_write_ninja_file(
|
|
path=path,
|
|
cflags=cflags,
|
|
post_cflags=None,
|
|
cuda_cflags=cuda_flags,
|
|
cuda_post_cflags=None,
|
|
cuda_dlink_post_cflags=None,
|
|
sources=sources,
|
|
objects=objects,
|
|
ldflags=ldflags,
|
|
library_target=library_target,
|
|
with_cuda=with_cuda)
|
|
|
|
|
|
def _write_ninja_file(path,
|
|
cflags,
|
|
post_cflags,
|
|
cuda_cflags,
|
|
cuda_post_cflags,
|
|
cuda_dlink_post_cflags,
|
|
sources,
|
|
objects,
|
|
ldflags,
|
|
library_target,
|
|
with_cuda) -> None:
|
|
r"""Write a ninja file that does the desired compiling and linking.
|
|
|
|
`path`: Where to write this file
|
|
`cflags`: list of flags to pass to $cxx. Can be None.
|
|
`post_cflags`: list of flags to append to the $cxx invocation. Can be None.
|
|
`cuda_cflags`: list of flags to pass to $nvcc. Can be None.
|
|
`cuda_postflags`: list of flags to append to the $nvcc invocation. Can be None.
|
|
`sources`: list of paths to source files
|
|
`objects`: list of desired paths to objects, one per source.
|
|
`ldflags`: list of flags to pass to linker. Can be None.
|
|
`library_target`: Name of the output library. Can be None; in that case,
|
|
we do no linking.
|
|
`with_cuda`: If we should be compiling with CUDA.
|
|
"""
|
|
def sanitize_flags(flags):
|
|
if flags is None:
|
|
return []
|
|
else:
|
|
return [flag.strip() for flag in flags]
|
|
|
|
cflags = sanitize_flags(cflags)
|
|
post_cflags = sanitize_flags(post_cflags)
|
|
cuda_cflags = sanitize_flags(cuda_cflags)
|
|
cuda_post_cflags = sanitize_flags(cuda_post_cflags)
|
|
cuda_dlink_post_cflags = sanitize_flags(cuda_dlink_post_cflags)
|
|
ldflags = sanitize_flags(ldflags)
|
|
|
|
# Sanity checks...
|
|
assert len(sources) == len(objects)
|
|
assert len(sources) > 0
|
|
|
|
compiler = get_cxx_compiler()
|
|
|
|
# Version 1.3 is required for the `deps` directive.
|
|
config = ['ninja_required_version = 1.3']
|
|
config.append(f'cxx = {compiler}')
|
|
if with_cuda or cuda_dlink_post_cflags:
|
|
if "PYTORCH_NVCC" in os.environ:
|
|
nvcc = os.getenv("PYTORCH_NVCC") # user can set nvcc compiler with ccache using the environment variable here
|
|
else:
|
|
if IS_HIP_EXTENSION:
|
|
nvcc = _join_rocm_home('bin', 'hipcc')
|
|
else:
|
|
nvcc = _join_cuda_home('bin', 'nvcc')
|
|
config.append(f'nvcc = {nvcc}')
|
|
|
|
if IS_HIP_EXTENSION:
|
|
post_cflags = COMMON_HIP_FLAGS + post_cflags
|
|
flags = [f'cflags = {" ".join(cflags)}']
|
|
flags.append(f'post_cflags = {" ".join(post_cflags)}')
|
|
if with_cuda:
|
|
flags.append(f'cuda_cflags = {" ".join(cuda_cflags)}')
|
|
flags.append(f'cuda_post_cflags = {" ".join(cuda_post_cflags)}')
|
|
flags.append(f'cuda_dlink_post_cflags = {" ".join(cuda_dlink_post_cflags)}')
|
|
flags.append(f'ldflags = {" ".join(ldflags)}')
|
|
|
|
# Turn into absolute paths so we can emit them into the ninja build
|
|
# file wherever it is.
|
|
sources = [os.path.abspath(file) for file in sources]
|
|
|
|
# See https://ninja-build.org/build.ninja.html for reference.
|
|
compile_rule = ['rule compile']
|
|
if IS_WINDOWS:
|
|
compile_rule.append(
|
|
' command = cl /showIncludes $cflags -c $in /Fo$out $post_cflags')
|
|
compile_rule.append(' deps = msvc')
|
|
else:
|
|
compile_rule.append(
|
|
' command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags')
|
|
compile_rule.append(' depfile = $out.d')
|
|
compile_rule.append(' deps = gcc')
|
|
|
|
if with_cuda:
|
|
cuda_compile_rule = ['rule cuda_compile']
|
|
nvcc_gendeps = ''
|
|
# --generate-dependencies-with-compile is not supported by ROCm
|
|
# Nvcc flag `--generate-dependencies-with-compile` is not supported by sccache, which may increase build time.
|
|
if torch.version.cuda is not None and os.getenv('TORCH_EXTENSION_SKIP_NVCC_GEN_DEPENDENCIES', '0') != '1':
|
|
cuda_compile_rule.append(' depfile = $out.d')
|
|
cuda_compile_rule.append(' deps = gcc')
|
|
# Note: non-system deps with nvcc are only supported
|
|
# on Linux so use --generate-dependencies-with-compile
|
|
# to make this work on Windows too.
|
|
nvcc_gendeps = '--generate-dependencies-with-compile --dependency-output $out.d'
|
|
cuda_compile_rule.append(
|
|
f' command = $nvcc {nvcc_gendeps} $cuda_cflags -c $in -o $out $cuda_post_cflags')
|
|
|
|
# Emit one build rule per source to enable incremental build.
|
|
build = []
|
|
for source_file, object_file in zip(sources, objects):
|
|
is_cuda_source = _is_cuda_file(source_file) and with_cuda
|
|
rule = 'cuda_compile' if is_cuda_source else 'compile'
|
|
if IS_WINDOWS:
|
|
source_file = source_file.replace(':', '$:')
|
|
object_file = object_file.replace(':', '$:')
|
|
source_file = source_file.replace(" ", "$ ")
|
|
object_file = object_file.replace(" ", "$ ")
|
|
build.append(f'build {object_file}: {rule} {source_file}')
|
|
|
|
if cuda_dlink_post_cflags:
|
|
devlink_out = os.path.join(os.path.dirname(objects[0]), 'dlink.o')
|
|
devlink_rule = ['rule cuda_devlink']
|
|
devlink_rule.append(' command = $nvcc $in -o $out $cuda_dlink_post_cflags')
|
|
devlink = [f'build {devlink_out}: cuda_devlink {" ".join(objects)}']
|
|
objects += [devlink_out]
|
|
else:
|
|
devlink_rule, devlink = [], []
|
|
|
|
if library_target is not None:
|
|
link_rule = ['rule link']
|
|
if IS_WINDOWS:
|
|
cl_paths = subprocess.check_output(['where',
|
|
'cl']).decode(*SUBPROCESS_DECODE_ARGS).split('\r\n')
|
|
if len(cl_paths) >= 1:
|
|
cl_path = os.path.dirname(cl_paths[0]).replace(':', '$:')
|
|
else:
|
|
raise RuntimeError("MSVC is required to load C++ extensions")
|
|
link_rule.append(f' command = "{cl_path}/link.exe" $in /nologo $ldflags /out:$out')
|
|
else:
|
|
link_rule.append(' command = $cxx $in $ldflags -o $out')
|
|
|
|
link = [f'build {library_target}: link {" ".join(objects)}']
|
|
|
|
default = [f'default {library_target}']
|
|
else:
|
|
link_rule, link, default = [], [], []
|
|
|
|
# 'Blocks' should be separated by newlines, for visual benefit.
|
|
blocks = [config, flags, compile_rule]
|
|
if with_cuda:
|
|
blocks.append(cuda_compile_rule) # type: ignore[possibly-undefined]
|
|
blocks += [devlink_rule, link_rule, build, devlink, link, default]
|
|
content = "\n\n".join("\n".join(b) for b in blocks)
|
|
# Ninja requires a new lines at the end of the .ninja file
|
|
content += "\n"
|
|
_maybe_write(path, content)
|
|
|
|
def _join_cuda_home(*paths) -> str:
|
|
"""
|
|
Join paths with CUDA_HOME, or raises an error if it CUDA_HOME is not set.
|
|
|
|
This is basically a lazy way of raising an error for missing $CUDA_HOME
|
|
only once we need to get any CUDA-specific path.
|
|
"""
|
|
if CUDA_HOME is None:
|
|
raise OSError('CUDA_HOME environment variable is not set. '
|
|
'Please set it to your CUDA install root.')
|
|
return os.path.join(CUDA_HOME, *paths)
|
|
|
|
|
|
def _is_cuda_file(path: str) -> bool:
|
|
valid_ext = ['.cu', '.cuh']
|
|
if IS_HIP_EXTENSION:
|
|
valid_ext.append('.hip')
|
|
return os.path.splitext(path)[1] in valid_ext
|