You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

834 lines
31 KiB

import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Sequence, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from torchvision.models._api import register_model, Weights, WeightsEnum
from torchvision.models._meta import _IMAGENET_CATEGORIES
from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface
from torchvision.ops.misc import Conv2dNormActivation, SqueezeExcitation
from torchvision.ops.stochastic_depth import StochasticDepth
from torchvision.transforms._presets import ImageClassification, InterpolationMode
from torchvision.utils import _log_api_usage_once
__all__ = [
"MaxVit",
"MaxVit_T_Weights",
"maxvit_t",
]
def _get_conv_output_shape(input_size: Tuple[int, int], kernel_size: int, stride: int, padding: int) -> Tuple[int, int]:
return (
(input_size[0] - kernel_size + 2 * padding) // stride + 1,
(input_size[1] - kernel_size + 2 * padding) // stride + 1,
)
def _make_block_input_shapes(input_size: Tuple[int, int], n_blocks: int) -> List[Tuple[int, int]]:
"""Util function to check that the input size is correct for a MaxVit configuration."""
shapes = []
block_input_shape = _get_conv_output_shape(input_size, 3, 2, 1)
for _ in range(n_blocks):
block_input_shape = _get_conv_output_shape(block_input_shape, 3, 2, 1)
shapes.append(block_input_shape)
return shapes
def _get_relative_position_index(height: int, width: int) -> torch.Tensor:
coords = torch.stack(torch.meshgrid([torch.arange(height), torch.arange(width)]))
coords_flat = torch.flatten(coords, 1)
relative_coords = coords_flat[:, :, None] - coords_flat[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += height - 1
relative_coords[:, :, 1] += width - 1
relative_coords[:, :, 0] *= 2 * width - 1
return relative_coords.sum(-1)
class MBConv(nn.Module):
"""MBConv: Mobile Inverted Residual Bottleneck.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
expansion_ratio (float): Expansion ratio in the bottleneck.
squeeze_ratio (float): Squeeze ratio in the SE Layer.
stride (int): Stride of the depthwise convolution.
activation_layer (Callable[..., nn.Module]): Activation function.
norm_layer (Callable[..., nn.Module]): Normalization function.
p_stochastic_dropout (float): Probability of stochastic depth.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
expansion_ratio: float,
squeeze_ratio: float,
stride: int,
activation_layer: Callable[..., nn.Module],
norm_layer: Callable[..., nn.Module],
p_stochastic_dropout: float = 0.0,
) -> None:
super().__init__()
proj: Sequence[nn.Module]
self.proj: nn.Module
should_proj = stride != 1 or in_channels != out_channels
if should_proj:
proj = [nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=True)]
if stride == 2:
proj = [nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)] + proj # type: ignore
self.proj = nn.Sequential(*proj)
else:
self.proj = nn.Identity() # type: ignore
mid_channels = int(out_channels * expansion_ratio)
sqz_channels = int(out_channels * squeeze_ratio)
if p_stochastic_dropout:
self.stochastic_depth = StochasticDepth(p_stochastic_dropout, mode="row") # type: ignore
else:
self.stochastic_depth = nn.Identity() # type: ignore
_layers = OrderedDict()
_layers["pre_norm"] = norm_layer(in_channels)
_layers["conv_a"] = Conv2dNormActivation(
in_channels,
mid_channels,
kernel_size=1,
stride=1,
padding=0,
activation_layer=activation_layer,
norm_layer=norm_layer,
inplace=None,
)
_layers["conv_b"] = Conv2dNormActivation(
mid_channels,
mid_channels,
kernel_size=3,
stride=stride,
padding=1,
activation_layer=activation_layer,
norm_layer=norm_layer,
groups=mid_channels,
inplace=None,
)
_layers["squeeze_excitation"] = SqueezeExcitation(mid_channels, sqz_channels, activation=nn.SiLU)
_layers["conv_c"] = nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, bias=True)
self.layers = nn.Sequential(_layers)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tensor): Input tensor with expected layout of [B, C, H, W].
Returns:
Tensor: Output tensor with expected layout of [B, C, H / stride, W / stride].
"""
res = self.proj(x)
x = self.stochastic_depth(self.layers(x))
return res + x
class RelativePositionalMultiHeadAttention(nn.Module):
"""Relative Positional Multi-Head Attention.
Args:
feat_dim (int): Number of input features.
head_dim (int): Number of features per head.
max_seq_len (int): Maximum sequence length.
"""
def __init__(
self,
feat_dim: int,
head_dim: int,
max_seq_len: int,
) -> None:
super().__init__()
if feat_dim % head_dim != 0:
raise ValueError(f"feat_dim: {feat_dim} must be divisible by head_dim: {head_dim}")
self.n_heads = feat_dim // head_dim
self.head_dim = head_dim
self.size = int(math.sqrt(max_seq_len))
self.max_seq_len = max_seq_len
self.to_qkv = nn.Linear(feat_dim, self.n_heads * self.head_dim * 3)
self.scale_factor = feat_dim**-0.5
self.merge = nn.Linear(self.head_dim * self.n_heads, feat_dim)
self.relative_position_bias_table = nn.parameter.Parameter(
torch.empty(((2 * self.size - 1) * (2 * self.size - 1), self.n_heads), dtype=torch.float32),
)
self.register_buffer("relative_position_index", _get_relative_position_index(self.size, self.size))
# initialize with truncated normal the bias
torch.nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)
def get_relative_positional_bias(self) -> torch.Tensor:
bias_index = self.relative_position_index.view(-1) # type: ignore
relative_bias = self.relative_position_bias_table[bias_index].view(self.max_seq_len, self.max_seq_len, -1) # type: ignore
relative_bias = relative_bias.permute(2, 0, 1).contiguous()
return relative_bias.unsqueeze(0)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tensor): Input tensor with expected layout of [B, G, P, D].
Returns:
Tensor: Output tensor with expected layout of [B, G, P, D].
"""
B, G, P, D = x.shape
H, DH = self.n_heads, self.head_dim
qkv = self.to_qkv(x)
q, k, v = torch.chunk(qkv, 3, dim=-1)
q = q.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4)
k = k.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4)
v = v.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4)
k = k * self.scale_factor
dot_prod = torch.einsum("B G H I D, B G H J D -> B G H I J", q, k)
pos_bias = self.get_relative_positional_bias()
dot_prod = F.softmax(dot_prod + pos_bias, dim=-1)
out = torch.einsum("B G H I J, B G H J D -> B G H I D", dot_prod, v)
out = out.permute(0, 1, 3, 2, 4).reshape(B, G, P, D)
out = self.merge(out)
return out
class SwapAxes(nn.Module):
"""Permute the axes of a tensor."""
def __init__(self, a: int, b: int) -> None:
super().__init__()
self.a = a
self.b = b
def forward(self, x: torch.Tensor) -> torch.Tensor:
res = torch.swapaxes(x, self.a, self.b)
return res
class WindowPartition(nn.Module):
"""
Partition the input tensor into non-overlapping windows.
"""
def __init__(self) -> None:
super().__init__()
def forward(self, x: Tensor, p: int) -> Tensor:
"""
Args:
x (Tensor): Input tensor with expected layout of [B, C, H, W].
p (int): Number of partitions.
Returns:
Tensor: Output tensor with expected layout of [B, H/P, W/P, P*P, C].
"""
B, C, H, W = x.shape
P = p
# chunk up H and W dimensions
x = x.reshape(B, C, H // P, P, W // P, P)
x = x.permute(0, 2, 4, 3, 5, 1)
# colapse P * P dimension
x = x.reshape(B, (H // P) * (W // P), P * P, C)
return x
class WindowDepartition(nn.Module):
"""
Departition the input tensor of non-overlapping windows into a feature volume of layout [B, C, H, W].
"""
def __init__(self) -> None:
super().__init__()
def forward(self, x: Tensor, p: int, h_partitions: int, w_partitions: int) -> Tensor:
"""
Args:
x (Tensor): Input tensor with expected layout of [B, (H/P * W/P), P*P, C].
p (int): Number of partitions.
h_partitions (int): Number of vertical partitions.
w_partitions (int): Number of horizontal partitions.
Returns:
Tensor: Output tensor with expected layout of [B, C, H, W].
"""
B, G, PP, C = x.shape
P = p
HP, WP = h_partitions, w_partitions
# split P * P dimension into 2 P tile dimensionsa
x = x.reshape(B, HP, WP, P, P, C)
# permute into B, C, HP, P, WP, P
x = x.permute(0, 5, 1, 3, 2, 4)
# reshape into B, C, H, W
x = x.reshape(B, C, HP * P, WP * P)
return x
class PartitionAttentionLayer(nn.Module):
"""
Layer for partitioning the input tensor into non-overlapping windows and applying attention to each window.
Args:
in_channels (int): Number of input channels.
head_dim (int): Dimension of each attention head.
partition_size (int): Size of the partitions.
partition_type (str): Type of partitioning to use. Can be either "grid" or "window".
grid_size (Tuple[int, int]): Size of the grid to partition the input tensor into.
mlp_ratio (int): Ratio of the feature size expansion in the MLP layer.
activation_layer (Callable[..., nn.Module]): Activation function to use.
norm_layer (Callable[..., nn.Module]): Normalization function to use.
attention_dropout (float): Dropout probability for the attention layer.
mlp_dropout (float): Dropout probability for the MLP layer.
p_stochastic_dropout (float): Probability of dropping out a partition.
"""
def __init__(
self,
in_channels: int,
head_dim: int,
# partitioning parameters
partition_size: int,
partition_type: str,
# grid size needs to be known at initialization time
# because we need to know hamy relative offsets there are in the grid
grid_size: Tuple[int, int],
mlp_ratio: int,
activation_layer: Callable[..., nn.Module],
norm_layer: Callable[..., nn.Module],
attention_dropout: float,
mlp_dropout: float,
p_stochastic_dropout: float,
) -> None:
super().__init__()
self.n_heads = in_channels // head_dim
self.head_dim = head_dim
self.n_partitions = grid_size[0] // partition_size
self.partition_type = partition_type
self.grid_size = grid_size
if partition_type not in ["grid", "window"]:
raise ValueError("partition_type must be either 'grid' or 'window'")
if partition_type == "window":
self.p, self.g = partition_size, self.n_partitions
else:
self.p, self.g = self.n_partitions, partition_size
self.partition_op = WindowPartition()
self.departition_op = WindowDepartition()
self.partition_swap = SwapAxes(-2, -3) if partition_type == "grid" else nn.Identity()
self.departition_swap = SwapAxes(-2, -3) if partition_type == "grid" else nn.Identity()
self.attn_layer = nn.Sequential(
norm_layer(in_channels),
# it's always going to be partition_size ** 2 because
# of the axis swap in the case of grid partitioning
RelativePositionalMultiHeadAttention(in_channels, head_dim, partition_size**2),
nn.Dropout(attention_dropout),
)
# pre-normalization similar to transformer layers
self.mlp_layer = nn.Sequential(
nn.LayerNorm(in_channels),
nn.Linear(in_channels, in_channels * mlp_ratio),
activation_layer(),
nn.Linear(in_channels * mlp_ratio, in_channels),
nn.Dropout(mlp_dropout),
)
# layer scale factors
self.stochastic_dropout = StochasticDepth(p_stochastic_dropout, mode="row")
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tensor): Input tensor with expected layout of [B, C, H, W].
Returns:
Tensor: Output tensor with expected layout of [B, C, H, W].
"""
# Undefined behavior if H or W are not divisible by p
# https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L766
gh, gw = self.grid_size[0] // self.p, self.grid_size[1] // self.p
torch._assert(
self.grid_size[0] % self.p == 0 and self.grid_size[1] % self.p == 0,
"Grid size must be divisible by partition size. Got grid size of {} and partition size of {}".format(
self.grid_size, self.p
),
)
x = self.partition_op(x, self.p)
x = self.partition_swap(x)
x = x + self.stochastic_dropout(self.attn_layer(x))
x = x + self.stochastic_dropout(self.mlp_layer(x))
x = self.departition_swap(x)
x = self.departition_op(x, self.p, gh, gw)
return x
class MaxVitLayer(nn.Module):
"""
MaxVit layer consisting of a MBConv layer followed by a PartitionAttentionLayer with `window` and a PartitionAttentionLayer with `grid`.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
expansion_ratio (float): Expansion ratio in the bottleneck.
squeeze_ratio (float): Squeeze ratio in the SE Layer.
stride (int): Stride of the depthwise convolution.
activation_layer (Callable[..., nn.Module]): Activation function.
norm_layer (Callable[..., nn.Module]): Normalization function.
head_dim (int): Dimension of the attention heads.
mlp_ratio (int): Ratio of the MLP layer.
mlp_dropout (float): Dropout probability for the MLP layer.
attention_dropout (float): Dropout probability for the attention layer.
p_stochastic_dropout (float): Probability of stochastic depth.
partition_size (int): Size of the partitions.
grid_size (Tuple[int, int]): Size of the input feature grid.
"""
def __init__(
self,
# conv parameters
in_channels: int,
out_channels: int,
squeeze_ratio: float,
expansion_ratio: float,
stride: int,
# conv + transformer parameters
norm_layer: Callable[..., nn.Module],
activation_layer: Callable[..., nn.Module],
# transformer parameters
head_dim: int,
mlp_ratio: int,
mlp_dropout: float,
attention_dropout: float,
p_stochastic_dropout: float,
# partitioning parameters
partition_size: int,
grid_size: Tuple[int, int],
) -> None:
super().__init__()
layers: OrderedDict = OrderedDict()
# convolutional layer
layers["MBconv"] = MBConv(
in_channels=in_channels,
out_channels=out_channels,
expansion_ratio=expansion_ratio,
squeeze_ratio=squeeze_ratio,
stride=stride,
activation_layer=activation_layer,
norm_layer=norm_layer,
p_stochastic_dropout=p_stochastic_dropout,
)
# attention layers, block -> grid
layers["window_attention"] = PartitionAttentionLayer(
in_channels=out_channels,
head_dim=head_dim,
partition_size=partition_size,
partition_type="window",
grid_size=grid_size,
mlp_ratio=mlp_ratio,
activation_layer=activation_layer,
norm_layer=nn.LayerNorm,
attention_dropout=attention_dropout,
mlp_dropout=mlp_dropout,
p_stochastic_dropout=p_stochastic_dropout,
)
layers["grid_attention"] = PartitionAttentionLayer(
in_channels=out_channels,
head_dim=head_dim,
partition_size=partition_size,
partition_type="grid",
grid_size=grid_size,
mlp_ratio=mlp_ratio,
activation_layer=activation_layer,
norm_layer=nn.LayerNorm,
attention_dropout=attention_dropout,
mlp_dropout=mlp_dropout,
p_stochastic_dropout=p_stochastic_dropout,
)
self.layers = nn.Sequential(layers)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, C, H, W).
Returns:
Tensor: Output tensor of shape (B, C, H, W).
"""
x = self.layers(x)
return x
class MaxVitBlock(nn.Module):
"""
A MaxVit block consisting of `n_layers` MaxVit layers.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
expansion_ratio (float): Expansion ratio in the bottleneck.
squeeze_ratio (float): Squeeze ratio in the SE Layer.
activation_layer (Callable[..., nn.Module]): Activation function.
norm_layer (Callable[..., nn.Module]): Normalization function.
head_dim (int): Dimension of the attention heads.
mlp_ratio (int): Ratio of the MLP layer.
mlp_dropout (float): Dropout probability for the MLP layer.
attention_dropout (float): Dropout probability for the attention layer.
p_stochastic_dropout (float): Probability of stochastic depth.
partition_size (int): Size of the partitions.
input_grid_size (Tuple[int, int]): Size of the input feature grid.
n_layers (int): Number of layers in the block.
p_stochastic (List[float]): List of probabilities for stochastic depth for each layer.
"""
def __init__(
self,
# conv parameters
in_channels: int,
out_channels: int,
squeeze_ratio: float,
expansion_ratio: float,
# conv + transformer parameters
norm_layer: Callable[..., nn.Module],
activation_layer: Callable[..., nn.Module],
# transformer parameters
head_dim: int,
mlp_ratio: int,
mlp_dropout: float,
attention_dropout: float,
# partitioning parameters
partition_size: int,
input_grid_size: Tuple[int, int],
# number of layers
n_layers: int,
p_stochastic: List[float],
) -> None:
super().__init__()
if not len(p_stochastic) == n_layers:
raise ValueError(f"p_stochastic must have length n_layers={n_layers}, got p_stochastic={p_stochastic}.")
self.layers = nn.ModuleList()
# account for the first stride of the first layer
self.grid_size = _get_conv_output_shape(input_grid_size, kernel_size=3, stride=2, padding=1)
for idx, p in enumerate(p_stochastic):
stride = 2 if idx == 0 else 1
self.layers += [
MaxVitLayer(
in_channels=in_channels if idx == 0 else out_channels,
out_channels=out_channels,
squeeze_ratio=squeeze_ratio,
expansion_ratio=expansion_ratio,
stride=stride,
norm_layer=norm_layer,
activation_layer=activation_layer,
head_dim=head_dim,
mlp_ratio=mlp_ratio,
mlp_dropout=mlp_dropout,
attention_dropout=attention_dropout,
partition_size=partition_size,
grid_size=self.grid_size,
p_stochastic_dropout=p,
),
]
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, C, H, W).
Returns:
Tensor: Output tensor of shape (B, C, H, W).
"""
for layer in self.layers:
x = layer(x)
return x
class MaxVit(nn.Module):
"""
Implements MaxVit Transformer from the `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_ paper.
Args:
input_size (Tuple[int, int]): Size of the input image.
stem_channels (int): Number of channels in the stem.
partition_size (int): Size of the partitions.
block_channels (List[int]): Number of channels in each block.
block_layers (List[int]): Number of layers in each block.
stochastic_depth_prob (float): Probability of stochastic depth. Expands to a list of probabilities for each layer that scales linearly to the specified value.
squeeze_ratio (float): Squeeze ratio in the SE Layer. Default: 0.25.
expansion_ratio (float): Expansion ratio in the MBConv bottleneck. Default: 4.
norm_layer (Callable[..., nn.Module]): Normalization function. Default: None (setting to None will produce a `BatchNorm2d(eps=1e-3, momentum=0.01)`).
activation_layer (Callable[..., nn.Module]): Activation function Default: nn.GELU.
head_dim (int): Dimension of the attention heads.
mlp_ratio (int): Expansion ratio of the MLP layer. Default: 4.
mlp_dropout (float): Dropout probability for the MLP layer. Default: 0.0.
attention_dropout (float): Dropout probability for the attention layer. Default: 0.0.
num_classes (int): Number of classes. Default: 1000.
"""
def __init__(
self,
# input size parameters
input_size: Tuple[int, int],
# stem and task parameters
stem_channels: int,
# partitioning parameters
partition_size: int,
# block parameters
block_channels: List[int],
block_layers: List[int],
# attention head dimensions
head_dim: int,
stochastic_depth_prob: float,
# conv + transformer parameters
# norm_layer is applied only to the conv layers
# activation_layer is applied both to conv and transformer layers
norm_layer: Optional[Callable[..., nn.Module]] = None,
activation_layer: Callable[..., nn.Module] = nn.GELU,
# conv parameters
squeeze_ratio: float = 0.25,
expansion_ratio: float = 4,
# transformer parameters
mlp_ratio: int = 4,
mlp_dropout: float = 0.0,
attention_dropout: float = 0.0,
# task parameters
num_classes: int = 1000,
) -> None:
super().__init__()
_log_api_usage_once(self)
input_channels = 3
# https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L1029-L1030
# for the exact parameters used in batchnorm
if norm_layer is None:
norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.01)
# Make sure input size will be divisible by the partition size in all blocks
# Undefined behavior if H or W are not divisible by p
# https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L766
block_input_sizes = _make_block_input_shapes(input_size, len(block_channels))
for idx, block_input_size in enumerate(block_input_sizes):
if block_input_size[0] % partition_size != 0 or block_input_size[1] % partition_size != 0:
raise ValueError(
f"Input size {block_input_size} of block {idx} is not divisible by partition size {partition_size}. "
f"Consider changing the partition size or the input size.\n"
f"Current configuration yields the following block input sizes: {block_input_sizes}."
)
# stem
self.stem = nn.Sequential(
Conv2dNormActivation(
input_channels,
stem_channels,
3,
stride=2,
norm_layer=norm_layer,
activation_layer=activation_layer,
bias=False,
inplace=None,
),
Conv2dNormActivation(
stem_channels, stem_channels, 3, stride=1, norm_layer=None, activation_layer=None, bias=True
),
)
# account for stem stride
input_size = _get_conv_output_shape(input_size, kernel_size=3, stride=2, padding=1)
self.partition_size = partition_size
# blocks
self.blocks = nn.ModuleList()
in_channels = [stem_channels] + block_channels[:-1]
out_channels = block_channels
# precompute the stochastich depth probabilities from 0 to stochastic_depth_prob
# since we have N blocks with L layers, we will have N * L probabilities uniformly distributed
# over the range [0, stochastic_depth_prob]
p_stochastic = np.linspace(0, stochastic_depth_prob, sum(block_layers)).tolist()
p_idx = 0
for in_channel, out_channel, num_layers in zip(in_channels, out_channels, block_layers):
self.blocks.append(
MaxVitBlock(
in_channels=in_channel,
out_channels=out_channel,
squeeze_ratio=squeeze_ratio,
expansion_ratio=expansion_ratio,
norm_layer=norm_layer,
activation_layer=activation_layer,
head_dim=head_dim,
mlp_ratio=mlp_ratio,
mlp_dropout=mlp_dropout,
attention_dropout=attention_dropout,
partition_size=partition_size,
input_grid_size=input_size,
n_layers=num_layers,
p_stochastic=p_stochastic[p_idx : p_idx + num_layers],
),
)
input_size = self.blocks[-1].grid_size
p_idx += num_layers
# see https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L1137-L1158
# for why there is Linear -> Tanh -> Linear
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.LayerNorm(block_channels[-1]),
nn.Linear(block_channels[-1], block_channels[-1]),
nn.Tanh(),
nn.Linear(block_channels[-1], num_classes, bias=False),
)
self._init_weights()
def forward(self, x: Tensor) -> Tensor:
x = self.stem(x)
for block in self.blocks:
x = block(x)
x = self.classifier(x)
return x
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
def _maxvit(
# stem parameters
stem_channels: int,
# block parameters
block_channels: List[int],
block_layers: List[int],
stochastic_depth_prob: float,
# partitioning parameters
partition_size: int,
# transformer parameters
head_dim: int,
# Weights API
weights: Optional[WeightsEnum] = None,
progress: bool = False,
# kwargs,
**kwargs: Any,
) -> MaxVit:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
assert weights.meta["min_size"][0] == weights.meta["min_size"][1]
_ovewrite_named_param(kwargs, "input_size", weights.meta["min_size"])
input_size = kwargs.pop("input_size", (224, 224))
model = MaxVit(
stem_channels=stem_channels,
block_channels=block_channels,
block_layers=block_layers,
stochastic_depth_prob=stochastic_depth_prob,
head_dim=head_dim,
partition_size=partition_size,
input_size=input_size,
**kwargs,
)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
class MaxVit_T_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
# URL empty until official release
url="https://download.pytorch.org/models/maxvit_t-bc5ab103.pth",
transforms=partial(
ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC
),
meta={
"categories": _IMAGENET_CATEGORIES,
"num_params": 30919624,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#maxvit",
"_metrics": {
"ImageNet-1K": {
"acc@1": 83.700,
"acc@5": 96.722,
}
},
"_ops": 5.558,
"_file_size": 118.769,
"_docs": """These weights reproduce closely the results of the paper using a similar training recipe.
They were trained with a BatchNorm2D momentum of 0.99 instead of the more correct 0.01.""",
},
)
DEFAULT = IMAGENET1K_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", MaxVit_T_Weights.IMAGENET1K_V1))
def maxvit_t(*, weights: Optional[MaxVit_T_Weights] = None, progress: bool = True, **kwargs: Any) -> MaxVit:
"""
Constructs a maxvit_t architecture from
`MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_.
Args:
weights (:class:`~torchvision.models.MaxVit_T_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.MaxVit_T_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.maxvit.MaxVit``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/maxvit.py>`_
for more details about this class.
.. autoclass:: torchvision.models.MaxVit_T_Weights
:members:
"""
weights = MaxVit_T_Weights.verify(weights)
return _maxvit(
stem_channels=64,
block_channels=[64, 128, 256, 512],
block_layers=[2, 2, 5, 2],
head_dim=32,
stochastic_depth_prob=0.2,
partition_size=7,
weights=weights,
progress=progress,
**kwargs,
)