From d94edc83db3ab5bc6022d187457c739c661d0fa4 Mon Sep 17 00:00:00 2001 From: prn5avofk <1772850471@qq.com> Date: Mon, 29 May 2023 12:57:13 +0800 Subject: [PATCH] ADD file via upload --- 20407123-李政-计科2001.html | 13955 ++++++++++++++++++++++++++++++ 1 file changed, 13955 insertions(+) create mode 100644 20407123-李政-计科2001.html diff --git a/20407123-李政-计科2001.html b/20407123-李政-计科2001.html new file mode 100644 index 0000000..53be297 --- /dev/null +++ b/20407123-李政-计科2001.html @@ -0,0 +1,13955 @@ + + +
+ +# your code
+# 定义变量和初始值
+n = 1
+sum = 0
+
+# 循环计算每项的值
+while n <= 20:
+ # 计算当前项的阶乘
+ factorial = 1
+ for i in range(1, n + 1):
+ factorial *= i
+
+ # 将当前项加入总和
+ sum += factorial
+
+ # 更新 n 的值
+ n += 1
+
+# 输出结果
+print('1! + 2! + 3! + ... + 20! =', sum)
+
# your code
+s = [9, 7, 8, 3, 2, 1, 55, 6]
+
+print('列表s的元素个数为:', len(s))
+print('列表s的最大值为:', max(s))
+print('列表s的最小值为:', min(s))
+s.append(10)
+s.remove(55)
+
+print('操作后的列表s为:', s)
+
TTTTTx
+TTTTxx
+TTTxxx
+TTxxxx
+Txxxxx
+
+# your code
+n = 6
+x = 'x'
+T = 'T'
+
+# 循环打印每一行
+for i in range(n):
+ # 打印每一行的 T
+ for j in range(n - i - 1):
+ print(T, end='')
+
+ # 打印每一行的 x
+ for k in range(i + 1):
+ print(x, end='')
+
+ # 换行
+ print()
+
# your code
+def Add(a,b):
+ return a+b
+def Sub(a,b):
+ return a-b
+def Mul(a,b):
+ return a*b
+def Div(a,b):
+ if(b==0):
+ print("Error!")
+ return
+ return a/b
+while True:
+ Choice = input("Choice:")
+ if(Choice == '0'):
+ break
+ a = int(input("a:"))
+ b = int(input("b:"))
+ if(Choice == '1'):
+ print(Add(a,b))
+ elif(Choice == '2'):
+ print(Sub(a,b))
+ elif(Choice == '3'):
+ print(Mul(a,b))
+ elif(Choice == '4'):
+ print(Div(a,b))
+
# your code
+class Student:
+ def __init__(self, name, age, courses):
+ self.name = name
+ self.age = age
+ self.courses = courses
+
+ def __str__(self):
+ info = '姓名:' + self.name + '\n'
+ info += '年龄:' + str(self.age) + '\n'
+ max_score = max(self.courses)
+ info += '最高分数:' + str(max_score)
+ return info
+
+# 实例化学生对象并测试
+st = Student('zhangming', 20, [69, 88, 100])
+
+# 输出学生信息
+print(st)
+
X | +Y | +X | +Y | +
---|---|---|---|
-3.00 | +4 | +0.15 | +255 | +
-2.50 | +12 | +0.75 | +170 | +
-1.75 | +50 | +1.25 | +100 | +
-1.15 | +120 | +1.85 | +20 | +
-0.50 | +205 | +2.45 | +14 | +
# your code
+import matplotlib.pyplot as plt
+X = [-3.00,-2.50,-1.75,-1.15,-0.50,0.15,0.75,1.25,1.85,2.45]
+Y = [4,12,50,120,205,255,170,100,20,14]
+label=[-3.00,-2.50,-1.75,-1.15,-0.50,0.15,0.75,1.25,1.85,2.45]
+plt.bar(X,Y,tick_label = label);
+
注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
+序号 | +X1 | +X2 | +X3 | +X4 | +Y | +
---|---|---|---|---|---|
1 | +7 | +26 | +6 | +60 | +78.5 | +
2 | +1 | +29 | +15 | +52 | +74.3 | +
3 | +11 | +56 | +8 | +20 | +104.3 | +
4 | +11 | +31 | +8 | +47 | +87.6 | +
5 | +7 | +52 | +6 | +33 | +95.9 | +
6 | +11 | +55 | +9 | +22 | +109.2 | +
7 | +3 | +71 | +17 | +6 | +102.7 | +
8 | +1 | +31 | +22 | +44 | +72.5 | +
9 | +2 | +54 | +18 | +22 | +93.1 | +
10 | +21 | +47 | +4 | +26 | +115.9 | +
11 | +1 | +40 | +23 | +34 | +83.8 | +
12 | +11 | +66 | +9 | +12 | +113.3 | +
13 | +10 | +68 | +8 | +12 | +109.4 | +
import pandas as pd
+from sklearn.model_selection import train_test_split
+from sklearn.linear_model import LinearRegression, Ridge, Lasso
+
+# 读取原始数据并创建数据框
+data = pd.DataFrame({
+ 'X1': [7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10],
+ 'X2': [26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68],
+ 'X3': [6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 13],
+ 'X4': [60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 22, 22],
+ 'Y': [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
+})
+
+# 分离出自变量和因变量
+X = data[['X1', 'X2', 'X3', 'X4']]
+y = data['Y']
+
+# 将训练集和测试集按 8:2 分割,随机种子为学号后两位
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=23)
+
+# 线性回归模型
+linear_model = LinearRegression()
+linear_model.fit(X_train, y_train)
+
+# 输出线性回归的 w 和 b 系数
+print('线性回归 w:', linear_model.coef_)
+print('线性回归 b:', linear_model.intercept_)
+
+# 岭回归模型
+ridge_model = Ridge(alpha=1.0)
+ridge_model.fit(X_train, y_train)
+
+# 输出岭回归的 w 和 b 系数
+print('岭回归 w:', ridge_model.coef_)
+print('岭回归 b:', ridge_model.intercept_)
+
+# Lasso 回归模型
+lasso_model = Lasso(alpha=1.0)
+lasso_model.fit(X_train, y_train)
+
+# 输出 Lasso 回归的 w 和 b 系数
+print('Lasso 回归 w:', lasso_model.coef_)
+print('Lasso 回归 b:', lasso_model.intercept_)
+
注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
+序号 | +年龄 | +收入 | +是否为学生 | +信誉 | +购买计算机 | +
---|---|---|---|---|---|
1 | +<=30 | +高 | +否 | +中 | +否 | +
2 | +<=30 | +高 | +否 | +优 | +否 | +
3 | +31-40 | +高 | +否 | +中 | +是 | +
4 | +>40 | +中 | +否 | +中 | +是 | +
5 | +>40 | +低 | +是 | +中 | +是 | +
6 | +>40 | +低 | +是 | +优 | +否 | +
7 | +31-40 | +低 | +是 | +优 | +是 | +
8 | +<=30 | +中 | +否 | +中 | +否 | +
9 | +<=30 | +低 | +是 | +中 | +是 | +
10 | +>40 | +中 | +是 | +中 | +是 | +
11 | +<=30 | +中 | +是 | +优 | +是 | +
12 | +31-40 | +中 | +否 | +优 | +是 | +
13 | +31-40 | +高 | +是 | +中 | +是 | +
14 | +>40 | +中 | +否 | +优 | +否 | +
import numpy as np
+import pandas as pd
+from sklearn import metrics
+# 导入高斯朴素贝叶斯分类器
+from sklearn.naive_bayes import GaussianNB
+from sklearn.model_selection import train_test_split
+
+x = np.array(
+ [
+ [1, 3, 0, 1, 0],
+ [1, 3, 0, 2, 1],
+ [2, 3, 0, 2, 1],
+ [3, 2, 0, 1, 1],
+ [3, 1, 1, 1, 1],
+ [3, 1, 1, 2, 0],
+ [2, 1, 1, 2, 1],
+ [1, 2, 0, 1, 0],
+ [1, 1, 1, 1, 1],
+ [3, 2, 1, 1, 1],
+ [1, 2, 1, 2, 1],
+ [2, 2, 0, 2, 1],
+ [2, 3, 1, 1, 1],
+ [3, 2, 0, 2, 0],
+ ]
+)
+
+y = np.array(
+ [
+ 0,1,1,1,1,0,1,0,1,1,1,1,1,0
+ ]
+)
+X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=23
+ )
+# 使用高斯朴素贝叶斯进行计算
+clf = GaussianNB()
+clf.fit(X_train, y_train)
+# 评估
+y_predict = clf.predict(X_test)
+score_gnb = metrics.accuracy_score(y_predict,y_test)
+
+print('该用户是否购买计算机:',y_predict)
+print(y_test)
+print(score_gnb)
+
+