import torch from DeepCross.trainer import Trainer from DeepCross.network import DeepCross from DeepCross.criteo_loader import getTestData, getTrainData import torch.utils.data as Data from torch.utils.tensorboard import SummaryWriter import time deepcross_config = \ { 'deep_layers': [256,128,64,32], # 设置Deep模块的隐层大小 'num_cross_layers': 4, # cross模块的层数 'num_epoch': 30, 'batch_size': 32, 'lr': 1e-3, 'l2_regularization': 1e-4, 'device_id': 0, 'use_cuda': True, 'train_file': '../Data/criteo/processed_data/train_set.csv', 'fea_file': '../Data/criteo/processed_data/fea_col.npy', 'validate_file': '../Data/criteo/processed_data/val_set.csv', 'test_file': '../Data/criteo/processed_data/test_set.csv', 'model_name': '../TrainedModels/DeepCross.model' } if __name__ == "__main__": #################################################################################### # DeepCross 模型 #################################################################################### training_data, training_label, dense_features_col, sparse_features_col = getTrainData(deepcross_config['train_file'], deepcross_config['fea_file']) train_dataset = Data.TensorDataset(torch.tensor(training_data).float(), torch.tensor(training_label).float()) test_data = getTestData(deepcross_config['test_file']) test_dataset = Data.TensorDataset(torch.tensor(test_data).float()) deepCross = DeepCross(deepcross_config, dense_features_cols=dense_features_col, sparse_features_cols=sparse_features_col) summary = SummaryWriter('../TrainedModels' + time.strftime("%Y-%m-%d", time.localtime())) #################################################################################### # 模型训练阶段 #################################################################################### # # 实例化模型训练器 trainer = Trainer(model=deepCross, config=deepcross_config) # 训练 trainer.train(train_dataset) # 保存模型 trainer.save() #################################################################################### # 模型测试阶段 #################################################################################### deepCross.eval() if deepcross_config['use_cuda']: deepCross.loadModel(map_location=lambda storage, loc: storage.cuda(deepcross_config['device_id'])) deepCross = deepCross.cuda() else: deepCross.loadModel(map_location=torch.device('cpu')) y_pred_probs = deepCross(torch.tensor(test_data).float().cuda()) y_pred = torch.where(y_pred_probs>0.5, torch.ones_like(y_pred_probs), torch.zeros_like(y_pred_probs)) print("Test Data CTR Predict...\n ", y_pred.view(-1))