You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

67 lines
2.6 KiB

import sys
import os.path as osp
this_dir = osp.dirname(__file__)
lib_path = osp.join(this_dir, '..')
sys.path.insert(0, lib_path)
import torch
from PNN.trainer import Trainer
from PNN.network import PNN
from PNN.criteo_loader import getTestData, getTrainData
import torch.utils.data as Data
pnn_config = \
{
'L2_dim': 256, # 设置L2隐层的输入维度
'embed_dim': 8,
'kernel_type': 'mat',
'use_inner': False,
'use_outter': True,
'num_epoch': 25,
'batch_size': 32,
'lr': 1e-3,
'l2_regularization': 1e-4,
'device_id': 1,
'use_cuda': True,
'train_file': '../Data/criteo/processed_data/train_set.csv',
'fea_file': '../Data/criteo/processed_data/fea_col.npy',
'validate_file': '../Data/criteo/processed_data/val_set.csv',
'test_file': '../Data/criteo/processed_data/test_set.csv',
'model_name': '../TrainedModels/pnn.model'
}
if __name__ == "__main__":
####################################################################################
# PNN 模型
####################################################################################
training_data, training_label, dense_features_col, sparse_features_col = getTrainData(pnn_config['train_file'], pnn_config['fea_file'])
train_dataset = Data.TensorDataset(torch.tensor(training_data).float(), torch.tensor(training_label).float())
test_data = getTestData(pnn_config['test_file'])
test_dataset = Data.TensorDataset(torch.tensor(test_data).float())
pnn = PNN(pnn_config, dense_features_cols=dense_features_col, sparse_features_cols=sparse_features_col)
####################################################################################
# 模型训练阶段
####################################################################################
# # 实例化模型训练器
trainer = Trainer(model=pnn, config=pnn_config)
# 训练
trainer.train(train_dataset)
# 保存模型
trainer.save()
####################################################################################
# 模型测试阶段
####################################################################################
pnn.eval()
if pnn_config['use_cuda']:
pnn.loadModel(map_location=lambda storage, loc: storage.cuda(pnn_config['device_id']))
pnn = pnn.cuda()
else:
pnn.loadModel(map_location=torch.device('cpu'))
y_pred_probs = pnn(torch.tensor(test_data).float().cuda())
y_pred = torch.where(y_pred_probs>0.5, torch.ones_like(y_pred_probs), torch.zeros_like(y_pred_probs))
print("Test Data CTR Predict...\n ", y_pred.view(-1))