import torch from WideDeep.trainer import Trainer from WideDeep.network import WideDeep from WideDeep.criteo_loader import getTestData, getTrainData import torch.utils.data as Data import numpy as np widedeep_config = \ { 'deep_dropout': 0, 'embed_dim': 8, # 用于控制稀疏特征经过Embedding层后的稠密特征大小 'hidden_layers': [256,128,64], 'num_epoch': 10, 'batch_size': 32, 'lr': 1e-3, 'l2_regularization': 1e-4, 'device_id': 0, 'use_cuda': True, 'train_file': '../Data/criteo/processed_data/train_set.csv', 'fea_file': '../Data/criteo/processed_data/fea_col.npy', 'validate_file': '../Data/criteo/processed_data/val_set.csv', 'test_file': '../Data/criteo/processed_data/test_set.csv', 'model_name': '../TrainedModels/WideDeep.model' } if __name__ == "__main__": #################################################################################### # WideDeep 模型 #################################################################################### training_data, training_label, dense_features_col, sparse_features_col = getTrainData(widedeep_config['train_file'], widedeep_config['fea_file']) train_dataset = Data.TensorDataset(torch.tensor(training_data).float(), torch.tensor(training_label).float()) test_data = getTestData(widedeep_config['test_file']) test_dataset = Data.TensorDataset(torch.tensor(test_data).float()) wideDeep = WideDeep(widedeep_config, dense_features_cols=dense_features_col, sparse_features_cols=sparse_features_col) #################################################################################### # 模型训练阶段 #################################################################################### # # 实例化模型训练器 trainer = Trainer(model=wideDeep, config=widedeep_config) # 训练 trainer.train(train_dataset) # 保存模型 trainer.save() #################################################################################### # 模型测试阶段 #################################################################################### wideDeep.eval() if widedeep_config['use_cuda']: wideDeep.loadModel(map_location=lambda storage, loc: storage.cuda(widedeep_config['device_id'])) resNet = wideDeep.cuda() else: wideDeep.loadModel(map_location=torch.device('cpu')) y_pred_probs = wideDeep(torch.tensor(test_data).float().cuda()) y_pred = torch.where(y_pred_probs>0.5, torch.ones_like(y_pred_probs), torch.zeros_like(y_pred_probs)) print("Test Data CTR Predict...\n ", y_pred.view(-1))