import torch import numpy as np from AutoRec.dataloader import Construct_DataLoader def pick_optimizer(network, params): optimizer = None if params['optimizer'] == 'sgd': optimizer = torch.optim.SGD(network.parameters(), lr=params['sgd_lr'], momentum=params['sgd_momentum'], weight_decay=params['l2_regularization']) elif params['optimizer'] == 'adam': optimizer = torch.optim.Adam(network.parameters(), lr=params['adam_lr'], weight_decay=params['l2_regularization']) elif params['optimizer'] == 'rmsprop': optimizer = torch.optim.RMSprop(network.parameters(), lr=params['rmsprop_lr'], alpha=params['rmsprop_alpha'], momentum=params['rmsprop_momentum']) return optimizer class Trainer(object): def __init__(self, model, config): self._model = model self._config = config self._optimizer = pick_optimizer(self._model, self._config) def _train_single_batch(self, batch_x, batch_mask_x): """ 对单个小批量数据进行训练 """ if self._config['use_cuda'] is True: # 将这些数据由CPU迁移到GPU batch_x, batch_mask_x = batch_x.cuda(), batch_mask_x.cuda() # 模型的输入为用户评分向量或者物品评分向量,调用forward进行前向传播 ratings_pred = self._model(batch_x.float()) # 通过交叉熵损失函数来计算损失, ratings_pred.view(-1)代表将预测结果摊平,变成一维的结构。 loss, rmse = self._model.loss(res=ratings_pred, input=batch_x, mask=batch_mask_x, optimizer=self._optimizer) # 先将梯度清零,如果不清零,那么这个梯度就和上一个mini-batch有关 self._optimizer.zero_grad() # 反向传播计算梯度 loss.backward() # 梯度下降等优化器 更新参数 self._optimizer.step() # 将loss的值提取成python的float类型 loss = loss.item() return loss, rmse def _train_an_epoch(self, train_loader, epoch_id, train_mask): """ 训练一个Epoch,即将训练集中的所有样本全部都过一遍 """ # 告诉模型目前处于训练模式,启用dropout以及batch normalization self._model.train() total_loss = 0 total_rmse = 0 # 从DataLoader中获取小批量的id以及数据 for batch_id, (batch_x, batch_mask_x) in enumerate(train_loader): assert isinstance(batch_x, torch.Tensor) assert isinstance(batch_mask_x, torch.Tensor) loss, rmse = self._train_single_batch(batch_x, batch_mask_x) print('[Training Epoch: {}] Batch: {}, Loss: {}, RMSE: {}'.format(epoch_id, batch_id, loss, rmse)) total_loss += loss total_rmse += rmse rmse = np.sqrt(total_rmse.detach().cpu().numpy() / (train_mask == 1).sum()) print('Training Epoch: {}, Total Loss: {}, total RMSE: {}'.format(epoch_id, total_loss, rmse)) def train(self, train_r, train_mask_r): # 是否使用GPU加速 self.use_cuda() for epoch in range(self._config['num_epoch']): print('-' * 20 + ' Epoch {} starts '.format(epoch) + '-' * 20) # 构造一个DataLoader data_loader = Construct_DataLoader(train_r, train_mask_r, batchsize=self._config['batch_size']) # 训练一个轮次 self._train_an_epoch(data_loader, epoch_id=epoch, train_mask=train_mask_r) def use_cuda(self): if self._config['use_cuda'] is True: assert torch.cuda.is_available(), 'CUDA is not available' torch.cuda.set_device(self._config['device_id']) self._model.cuda() def save(self): self._model.saveModel()