|
|
|
|
# 导入工具包
|
|
|
|
|
import numpy as np
|
|
|
|
|
import argparse
|
|
|
|
|
import cv2
|
|
|
|
|
import pytesseract
|
|
|
|
|
import os
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
|
# def process_image(image_path):
|
|
|
|
|
# try:
|
|
|
|
|
# # 使用Pillow库打开并显示图片
|
|
|
|
|
# with Image.open(image_path) as img:
|
|
|
|
|
# img.show()
|
|
|
|
|
# # 在这里添加更多处理图片的代码...
|
|
|
|
|
# except IOError:
|
|
|
|
|
# print(f"无法打开图片: {image_path}")
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
parser = argparse.ArgumentParser(description="处理图片的脚本")
|
|
|
|
|
parser.add_argument("-i", "--image", required=True, help="指定要处理的图片的路径")
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
# process_image(args.image)
|
|
|
|
|
print("main")
|
|
|
|
|
|
|
|
|
|
def order_points(pts):
|
|
|
|
|
# 一共4个坐标点
|
|
|
|
|
rect = np.zeros((4, 2), dtype = "float32")
|
|
|
|
|
|
|
|
|
|
# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
|
|
|
|
|
# 计算左上,右下
|
|
|
|
|
s = pts.sum(axis = 1)
|
|
|
|
|
rect[0] = pts[np.argmin(s)]
|
|
|
|
|
rect[2] = pts[np.argmax(s)]
|
|
|
|
|
|
|
|
|
|
# 计算右上和左下
|
|
|
|
|
diff = np.diff(pts, axis = 1)
|
|
|
|
|
rect[1] = pts[np.argmin(diff)]
|
|
|
|
|
rect[3] = pts[np.argmax(diff)]
|
|
|
|
|
|
|
|
|
|
return rect
|
|
|
|
|
|
|
|
|
|
def four_point_transform(image, pts):
|
|
|
|
|
# 获取输入坐标点
|
|
|
|
|
rect = order_points(pts)
|
|
|
|
|
(tl, tr, br, bl) = rect
|
|
|
|
|
|
|
|
|
|
# 计算输入的w和h值
|
|
|
|
|
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
|
|
|
|
|
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
|
|
|
|
|
maxWidth = max(int(widthA), int(widthB))
|
|
|
|
|
|
|
|
|
|
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
|
|
|
|
|
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
|
|
|
|
|
maxHeight = max(int(heightA), int(heightB))
|
|
|
|
|
|
|
|
|
|
# 变换后对应坐标位置
|
|
|
|
|
dst = np.array([
|
|
|
|
|
[0, 0],
|
|
|
|
|
[maxWidth - 1, 0],
|
|
|
|
|
[maxWidth - 1, maxHeight - 1],
|
|
|
|
|
[0, maxHeight - 1]], dtype = "float32")
|
|
|
|
|
|
|
|
|
|
# 计算变换矩阵
|
|
|
|
|
M = cv2.getPerspectiveTransform(rect, dst)
|
|
|
|
|
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
|
|
|
|
|
|
|
|
|
|
# 返回变换后结果
|
|
|
|
|
return warped
|
|
|
|
|
|
|
|
|
|
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
|
|
|
|
|
dim = None
|
|
|
|
|
(h, w) = image.shape[:2]
|
|
|
|
|
if width is None and height is None:
|
|
|
|
|
return image
|
|
|
|
|
if width is None:
|
|
|
|
|
r = height / float(h)
|
|
|
|
|
dim = (int(w * r), height)
|
|
|
|
|
else:
|
|
|
|
|
r = width / float(w)
|
|
|
|
|
dim = (width, int(h * r))
|
|
|
|
|
resized = cv2.resize(image, dim, interpolation=inter)
|
|
|
|
|
return resized
|
|
|
|
|
|
|
|
|
|
# 设置参数
|
|
|
|
|
ap = argparse.ArgumentParser()
|
|
|
|
|
ap.add_argument("-i", "--image", required = True,
|
|
|
|
|
help = "Path to the image to be scanned")
|
|
|
|
|
args = vars(ap.parse_args())
|
|
|
|
|
print("arg")
|
|
|
|
|
|
|
|
|
|
print(__name__)
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|
|
|
|
|
|
|
|
|
|
# 读取输入
|
|
|
|
|
image = cv2.imread(args["image"])
|
|
|
|
|
#坐标也会相同变化
|
|
|
|
|
ratio = image.shape[0] / 500.0
|
|
|
|
|
orig = image.copy()
|
|
|
|
|
image = resize(orig, height = 500)
|
|
|
|
|
|
|
|
|
|
# 预处理
|
|
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 色彩空间转换
|
|
|
|
|
gray = cv2.GaussianBlur(gray, (5, 5), 0) # 高斯模糊
|
|
|
|
|
edged = cv2.Canny(gray, 75, 200)
|
|
|
|
|
|
|
|
|
|
# 展示预处理结果
|
|
|
|
|
print("STEP 1: 边缘检测")
|
|
|
|
|
cv2.imshow("Image", image)
|
|
|
|
|
cv2.imshow("Edged", edged)
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
# 轮廓检测
|
|
|
|
|
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
|
|
|
|
|
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5] # 降序排列+切片
|
|
|
|
|
|
|
|
|
|
# 遍历轮廓
|
|
|
|
|
for c in cnts:
|
|
|
|
|
# 计算轮廓近似
|
|
|
|
|
peri = cv2.arcLength(c, True)
|
|
|
|
|
# C表示输入的点集(数组)
|
|
|
|
|
# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
|
|
|
|
|
# True表示封闭的
|
|
|
|
|
approx = cv2.approxPolyDP(c, 0.10 * peri, True) # 近似
|
|
|
|
|
|
|
|
|
|
# 4个点的时候就拿出来
|
|
|
|
|
if len(approx) == 4:
|
|
|
|
|
screenCnt = approx
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
# 展示结果
|
|
|
|
|
|
|
|
|
|
print("STEP 2: 获取轮廓")
|
|
|
|
|
cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
|
|
|
|
|
cv2.imshow("Outline", image)
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
# 透视变换
|
|
|
|
|
warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
|
|
|
|
|
|
|
|
|
|
# 二值处理
|
|
|
|
|
warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
|
cv2.imwrite('scan.jpg', ref)
|
|
|
|
|
|
|
|
|
|
# 展示结果
|
|
|
|
|
print("STEP 3: 变换")
|
|
|
|
|
cv2.imshow("Original", resize(orig, height = 650))
|
|
|
|
|
cv2.imshow("Scanned", resize(ref, height = 650))
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
# OCR扫描
|
|
|
|
|
preprocess = "blur"
|
|
|
|
|
|
|
|
|
|
if preprocess == "thresh":
|
|
|
|
|
gray = cv2.threshold(ref, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
|
|
|
|
|
if preprocess == "blur":
|
|
|
|
|
gray = cv2.medianBlur(ref, 3)
|
|
|
|
|
cv2.imshow("Detect", gray)
|
|
|
|
|
|
|
|
|
|
filename = "{}.png".format(os.getpid())
|
|
|
|
|
cv2.imwrite(filename, gray)
|
|
|
|
|
text = pytesseract.image_to_string(Image.open(filename)) # 调用Tesseract OCR引擎对保存的图像进行文本识别
|
|
|
|
|
os.remove(filename)
|
|
|
|
|
|
|
|
|
|
encodings = ['utf-8', 'latin1', 'iso-8859-1', 'cp1252', 'gbk', 'big5']
|
|
|
|
|
for encoding in encodings:
|
|
|
|
|
try:
|
|
|
|
|
with open("out.txt", 'w', encoding=encoding, errors="replace") as file:
|
|
|
|
|
file.write(text)
|
|
|
|
|
break
|
|
|
|
|
except UnicodeDecodeError:
|
|
|
|
|
continue
|
|
|
|
|
file.close()
|
|
|
|
|
print("text is written to out.txt")
|
|
|
|
|
|
|
|
|
|
# Wait for pressing any key
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
cv2.destroyAllWindows()
|