branch-Zhangruiqin
liuwenhao 2 months ago
parent bce0ac63ed
commit 65ca9afacc

@ -1,3 +1,6 @@
这段代码是一个Python类的实现名为`MindData`它是一个用于模拟MindSpore框架中数据集处理的桩Stub下面是对这段代码的逐行注释
```python
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -12,77 +15,94 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''Remove after MindData merge to MindSpore '''
import numpy as np
from mindspore import Tensor
class MindData:
""" Stub for MindData """
# 构造函数初始化MindData类的实例
def __init__(self, size=1, batch_size=None, repeat_count=1,
np_types=None, output_shapes=None, input_indexs=()):
self._size = size
self._batch_size = batch_size
self._repeat_count = repeat_count
self._np_types = np_types
self._output_shapes = output_shapes
self._input_indexs = input_indexs
self._iter_num = 0
self.dynamic_setting = [False, None]
self._size = size # 数据集的大小
self._batch_size = batch_size # 批处理大小
self._repeat_count = repeat_count # 重复次数
self._np_types = np_types # NumPy数据类型
self._output_shapes = output_shapes # 输出形状
self._input_indexs = input_indexs # 输入索引
self._iter_num = 0 # 迭代次数计数器
self.dynamic_setting = [False, None] # 动态设置标志和值
# 获取数据集大小
def get_dataset_size(self):
return self._size
# 获取重复次数
def get_repeat_count(self):
return self._repeat_count
# 获取批处理大小
def get_batch_size(self):
return self._batch_size
# 获取输出数据类型
def output_types(self):
return self._np_types
# 获取输出形状
def output_shapes(self):
return self._output_shapes
# 输入索引属性
@property
def input_indexs(self):
return self._input_indexs
# 设备队列设置
def device_que(self, send_epoch_end=True, create_data_info_queue=False):
self.queue_name = '6ba41974-209e-11ea-88b0-a24efeb2c736'
self.send_epoch_end = send_epoch_end
return self
# 创建元组迭代器
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
return self.__iter__()
# 发送数据
def send(self, num_epochs=-1):
pass
# 停止发送数据
def stop_send(self):
pass
# 释放资源
def release(self):
pass
# 继续发送数据
def continue_send(self):
pass
# 获取数据信息
def get_data_info(self):
pass
# 动态最小最大形状
def dynamic_min_max_shapes(self):
pass
# 获取长度
def __len__(self):
return self._size
# 迭代器
def __iter__(self):
return self
# 获取下一个元素
def __next__(self):
if self._size < self._iter_num:
raise StopIteration
@ -90,11 +110,13 @@ class MindData:
next_value = []
for shape, typ in zip(self._output_shapes, self._np_types):
next_value.append(Tensor(np.ndarray(shape, typ)))
return tuple(next_value)
# 下一个元素
def next(self):
return self.__next__()
# 重置迭代器
def reset(self):
self._iter_num = 0

Loading…
Cancel
Save