|
|
|
@ -1,3 +1,6 @@
|
|
|
|
|
这段代码是一个Python类的实现,名为`MindData`,它是一个用于模拟MindSpore框架中数据集处理的桩(Stub)。下面是对这段代码的逐行注释:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
@ -12,77 +15,94 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
|
|
'''Remove after MindData merge to MindSpore '''
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MindData:
|
|
|
|
|
""" Stub for MindData """
|
|
|
|
|
|
|
|
|
|
# 构造函数,初始化MindData类的实例
|
|
|
|
|
def __init__(self, size=1, batch_size=None, repeat_count=1,
|
|
|
|
|
np_types=None, output_shapes=None, input_indexs=()):
|
|
|
|
|
self._size = size
|
|
|
|
|
self._batch_size = batch_size
|
|
|
|
|
self._repeat_count = repeat_count
|
|
|
|
|
self._np_types = np_types
|
|
|
|
|
self._output_shapes = output_shapes
|
|
|
|
|
self._input_indexs = input_indexs
|
|
|
|
|
self._iter_num = 0
|
|
|
|
|
self.dynamic_setting = [False, None]
|
|
|
|
|
|
|
|
|
|
self._size = size # 数据集的大小
|
|
|
|
|
self._batch_size = batch_size # 批处理大小
|
|
|
|
|
self._repeat_count = repeat_count # 重复次数
|
|
|
|
|
self._np_types = np_types # NumPy数据类型
|
|
|
|
|
self._output_shapes = output_shapes # 输出形状
|
|
|
|
|
self._input_indexs = input_indexs # 输入索引
|
|
|
|
|
self._iter_num = 0 # 迭代次数计数器
|
|
|
|
|
self.dynamic_setting = [False, None] # 动态设置标志和值
|
|
|
|
|
|
|
|
|
|
# 获取数据集大小
|
|
|
|
|
def get_dataset_size(self):
|
|
|
|
|
return self._size
|
|
|
|
|
|
|
|
|
|
# 获取重复次数
|
|
|
|
|
def get_repeat_count(self):
|
|
|
|
|
return self._repeat_count
|
|
|
|
|
|
|
|
|
|
# 获取批处理大小
|
|
|
|
|
def get_batch_size(self):
|
|
|
|
|
return self._batch_size
|
|
|
|
|
|
|
|
|
|
# 获取输出数据类型
|
|
|
|
|
def output_types(self):
|
|
|
|
|
return self._np_types
|
|
|
|
|
|
|
|
|
|
# 获取输出形状
|
|
|
|
|
def output_shapes(self):
|
|
|
|
|
return self._output_shapes
|
|
|
|
|
|
|
|
|
|
# 输入索引属性
|
|
|
|
|
@property
|
|
|
|
|
def input_indexs(self):
|
|
|
|
|
return self._input_indexs
|
|
|
|
|
|
|
|
|
|
# 设备队列设置
|
|
|
|
|
def device_que(self, send_epoch_end=True, create_data_info_queue=False):
|
|
|
|
|
self.queue_name = '6ba41974-209e-11ea-88b0-a24efeb2c736'
|
|
|
|
|
self.send_epoch_end = send_epoch_end
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
# 创建元组迭代器
|
|
|
|
|
def create_tuple_iterator(self, num_epochs=-1, do_copy=True):
|
|
|
|
|
return self.__iter__()
|
|
|
|
|
|
|
|
|
|
# 发送数据
|
|
|
|
|
def send(self, num_epochs=-1):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 停止发送数据
|
|
|
|
|
def stop_send(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 释放资源
|
|
|
|
|
def release(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 继续发送数据
|
|
|
|
|
def continue_send(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 获取数据信息
|
|
|
|
|
def get_data_info(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 动态最小最大形状
|
|
|
|
|
def dynamic_min_max_shapes(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# 获取长度
|
|
|
|
|
def __len__(self):
|
|
|
|
|
return self._size
|
|
|
|
|
|
|
|
|
|
# 迭代器
|
|
|
|
|
def __iter__(self):
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
# 获取下一个元素
|
|
|
|
|
def __next__(self):
|
|
|
|
|
if self._size < self._iter_num:
|
|
|
|
|
raise StopIteration
|
|
|
|
@ -90,11 +110,13 @@ class MindData:
|
|
|
|
|
next_value = []
|
|
|
|
|
for shape, typ in zip(self._output_shapes, self._np_types):
|
|
|
|
|
next_value.append(Tensor(np.ndarray(shape, typ)))
|
|
|
|
|
|
|
|
|
|
return tuple(next_value)
|
|
|
|
|
|
|
|
|
|
# 下一个元素
|
|
|
|
|
def next(self):
|
|
|
|
|
return self.__next__()
|
|
|
|
|
|
|
|
|
|
# 重置迭代器
|
|
|
|
|
def reset(self):
|
|
|
|
|
self._iter_num = 0
|
|
|
|
|
|
|
|
|
|