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A. Code and Data Splits for Reproducibility 992

All code resources needed to reproduce our analysis can be found in our github repo 993
https://anonymous.4open.science/r/SSL-vs-SSL-benchmark-48B0/README.md 994
The exact splits of the TissueMNIST, PathMNIST, TMED-2, AIROGS we used will also be provided upon acceptance. 995
Our codebase builds upon the open-source PyTorch repo by Suzuki [61]. We added many additional algorithms (we added 996

MixMatch, FixMatch, FlexMatch, and CoMatch, as well as all 7 self-supervised methods) and customized the experiments, 997
especially providing a runtime-budgeted hyperparameter tuning strategy as outlined in App. D. 998

Suzuki’s code was intended as a reimplementation in PyTorch of Oliver et al. [54]’s benchmark of semi-supervised learning 999
(while Oliver et al’s original repo was in Tensorflow, we prefer PyTorch). 1000

In a way, this makes our repo a “cousin” of the codebase of Su et al. [60]’s fine-grained classification benchmark, because 1001
their github repo also credits Suzuki’s repo as an ancestor. 1002
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B. Dataset Details1003

B.1. Dataset Selection1004

We selected PathMNIST and TissueMNIST from 12 candidate datasets in the MedMNIST collections [68, 69] by matching1005
two criteria: (i) contains at least 5 imbalanced classes; (ii) can build a large unlabeled set (at least 50000 images). Prior1006
experiments from dataset creator Yang et al. [69] suggest 28x28 resolution is a reasonable choice. They report that a larger1007
resolution (224x224) does not yield much more accurate classifiers for these two datasets.1008

B.2. Class Description1009

TissueMNIST contains images of human kidney cortex cells. The dataset contains 8 classes. See [69] for more details.1010

Class ID Abbreviation Description

0 CD/CT Collecting Duct, Connecting Tubule
1 DCT Distal Convoluted Tubule
2 GE Glomerular endothelial cells
3 IE Interstitial endothelial cells
4 LEU Leukocytes
5 POD Podocytes
6 PT Proximal Tubule Segments
7 TAL Thick Ascending Limb

PathMNIST contains patches from colorectal cancer histology slides that comprise of 9 tissue types. See [42, 69] for more1011
details.1012

Class ID Abbreviation Description

0 ADI adipose
1 BACK background
2 DEB debris
3 LYM lymphocytes
4 MUC mucus
5 MUS smooth muscle
6 NORM normal colon mucosa
7 STR cancer-associated stroma
8 TUM colorectal adenocarcinoma epithelium

TMED-2 contains 2D grayscale images captured from routine echocardiogram scans. In this study, we adopt the view1013
classification task from [36]. For more detail please see [36, 37]1014

Class ID Abbreviation Description

0 PLAX parasternal long axis
1 PSAX parasternal short axis
2 A2C apical 2-chamber
3 A4C apical 4-chamber

AIROGS is a dataset of color image of the retina. The binary classification task is to differentiate between referable1015
glaucoma and no referable glaucoma [22].1016

Class ID Abbreviation Description

0 No Glauc. no referable glaucoma
1 Glaucoma referable glaucoma
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C. Additional Results 1017

C.1. Impact of pretraining on accuracy-over-time profiles 1018

To study the impact of pretraining, we compare the accuracy-over-time profiles of TissueMNIST and PathMNIST based on 1019
the two different initialization strategy. 1020

Fig. C.1 left column shows pretraining on ImageNet strategy, right column shows random initialization. On TissueMNIST, 1021
SimCLR (green) and BYOL (blue) are the top two methods in both cases. On PathMNIST, semi-supervised methods seem 1022
better: FixMatch and CoMatch are best on the pretraining case, with MixMatch and Flexmatch only a few points of balanced 1023
accuracy lower. MixMatch and CoMatch are best in the random initialization case. 1024

Across both plots, pretraining does not seem to impact the top-performing methods’ ultimate accuracy by much. (e.g. 1025
by more than a few points of accuracy). However, with more limited time budgets (e.g. after only a few hours), we do see 1026
initialization from pretraining understandably tends to improve some methods. Pretraining time on a source dataset is NOT 1027
counted to the runtime reported in x-axis. 1028
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Figure C.1. Balanced accuracy on test set over time for semi- and self-supervised methods, with (left) and without (right) initial weight
pretraining on ImageNet. Curves represent mean of each method at each time over 5 trials of Alg. D.1.
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C.2. Comparing validation profiles of accuracy-over-time1029

Fig. C.2 shows profiles of accuracy over time on the validation set, in contrast to the test set performance shown in the main1030
paper’s Fig. 1.1031

All curves here by definition must be monotonically increasing, because our unified algorithm selects new checkpoints1032
only when they improve the validation-set balanced accuracy metric. The important insight our work reveals is that the same1033
model checkpoints selected here, based on validation-set accuracy, also tend to produce improved test-set accuracy over time1034
(in Fig. 1). This helps provide empirical confidence in using realistically-sized validation sets.1035
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Figure C.2. VALIDATION accuracy over time profiles of semi- and self-supervised methods on 4 datasets (panels a-d).All curves here
by definition must be monotonically increasing. We see that the increasing validation set performance translate to increasing test set
performance in Fig. 1.
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C.3. Additional Evaluation Metrics 1036
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Figure C.3. Upper: Res18. Lower: Res50. The figure from left to right are Test Performance over time profiles of semi- and self-
supervised methods on AIROGS dataset across 4 metircs: Balanced Accuracy, AUC, Partial AUC for 90% - 100% specificity and
Sensitivity at 95% specificity (panels a-c). At each time, we report mean of each method over 5 trials of Alg. D.1.

C.4. Variance Across Trials 1037

In Fig. C.4 below, we explicitly visualize the variability in performance of each method across the 5 separate trials of Alg. D.1 1038
(most other figures show the mean of these 5 trials for visual clarity). 1039
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Figure C.4. Balanced accuracy of different methods across 2 time budgets (columns) and four datasets (rows). For each method, the interval
indicates the low and high performance of 5 separate trials of Alg. D.1, while dot indicates the mean performance. Horizontal lines indicate
the best labeled-set-only baseline at that time. Abbreviation: CM, Fl, Fi, MM, MT, PL, DI, SC, BL, BT, SS, SV, MC denote CoMatch,
FlexMatch, FixMatch, MixMatch, Mean Teacher, Pseudo Label, DINO, SimCLR, BYOL, Barlow Twins, SimSiam, SwAV, MOCO (v2).

18



CVPR
#*****

CVPR
#*****

CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

D. Algorithms Details 1040

D.1. Algorithm : Random Hyperparameter search on a budget 1041

Algorithm D.1 outlines our uniform hyperparameter tuning procedures used across all algorithms under comparison. The 1042
algorithm requires three sources of data: a labeled training set L = {X,Y }, an unlabeled set for training U = XU , and 1043
a separate realistically-sized labeled validation set {Xval, Y val}. We further require some budget restrictions: a common 1044
computational budget T (maximum number of hours), and a maximum training epoch per hyperparameter configuration E. 1045

We proceed as follows: We begin by randomly sampling a hyperparameter configuration from a defined range (see Ap- 1046
pendix F.1 for details). A model is then initialized and trained using the ADAM optimizer with the sampled hyperparameters. 1047
Each configuration is trained for a maximum of E (200) epochs or stopped early if the validation performance does not 1048
improve for 20 consecutive epochs. The model’s performance on the validation set is measured using balanced accuracy. 1049
Upon completion of training for a given hyperparameter configuration (either after reaching maximum epoch E or after early 1050
stopping), a new configuration is sampled and the process repeats until the total compute budget T is expended. 1051

We track the best-so-far model performance every 30 minutes, and save the best-so-far model and its corresponding 1052
validation and test performance. Semi-supervised algorithms simultaneously train the representation layers v and classifier 1053
layer w, while self-supervised algorithms train the representation layers v for each epoch and then fine-tune a linear classifier 1054
with weights w anew at the end of each epoch using sklearn logistic regression model [56] with representation parameters v 1055
frozen. 1056

Algorithm D.1 Unified Procedure for Training + Hyperparameter selection via random search

Input:
• Train set of features X paired with labels Y, with extra unlabeled features U
• Validation set of features Xval and labels Yval

• Runtime budget T , Max Epoch E
Output: Trained weights {v, w}, where v is the representation module, w is the classifier layer

1: while time elapsed < T do
2: λ ∼ DRAWHYPERS ▷ Sample hyperparameters for pre-defined range
3: ξ ← CREATEOPTIM(λ) ▷ Initialize stateful optimizer e.g., ADAM
4: {v, w} ∼ INITWEIGHTS ▷ Initialize model weights
5: for epoch e in 1, 2, . . . , E do
6: if self-supervised then
7: v ← TRAINONEEPOCH(U, v, λ, ξ) ▷ Optimize Eq. with λL = 0
8: w ← TRAINCLASSIFIER(Y, fv(X))
9: else if semi-supervised then

10: v, w ← TRAINONEEPOCH(X,Y,U, v, w, λ, ξ) ▷ Optimize Eq.
11: else
12: v, w ← TRAINONEEPOCH(X,Y, v, w, λ, ξ) ▷ Optimize Eq. with λU = 0
13: end if
14: me ← CALCBALACC(Xval,Yval, v, w) ▷ Record performance metric on val.
15: if first try or me > m∗ then
16: v∗, w∗ ← v, w; λ∗ ← λ; m∗ ← me ▷ Update best config found so far
17: end if
18: if EARLYSTOP(m1,m2, . . . ,me) or time elapsed > T then
19: break
20: end if
21: end for
22: end while
23: return v∗, w∗, λ∗,m∗

19
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D.2. Hyperparameter transfer strategy1057

To make the most of limited labeled data, one potential strategy is to use the entire labeled set for training, reserving no1058
validation set at all, and thus relies on pre-established hyperparameters from other dataset/experiments. In this study, we1059
experiment with two scenarios: using pre-determined hyperparameters from 1. CIFAR-10, or 2. TissueMNIST. The CIFAR-1060
10 hyperparameters are sourced from public repositories, we ensure that our CIFAR-10 hyperparameter choices on our re-1061
implementation of the algorithms matches previously reported results in the literature. The TissueMNIST hyperparameters1062
originate from our experiments as depicted in Figure C.2 (a).1063

D.3. Semi-supervised method details.1064

Semi-supervised learning trains on the labeled and unlabeled data simultaneously, usually with the total loss being a weighted1065
sum of a labeled loss term and an unlabeled loss term. Different methods mainly differs in how unlabeled data is used to1066
form training signals. Many approaches have been proposed and refined over the past decades. These include co-training,1067
which involves training multiple classifiers on various views of the input data [6, 53]; graph-structure-based models [40, 76];1068
generative models [46, 47]; consistency regularization-based models that enforce consistent model outputs [4, 49, 62]; pseudo1069
label-based models that impute labels for unlabeled data [11, 50]; and hybrid models that combines several methods [58].1070
Comprehensive reviews can be found in Chapelle et al. [13], Van Engelen and Hoos [63], Zhu [77].1071

Among the deep classifier methods following Eq. (1), below we describe each method we selected and how its specific1072
unlabeled loss is constructed.1073

Pseudo-Labeling uses the current model to assign class probabilities to each sample in the unlabeled batch. If, for an unla-1074
beled sample, the maximum class probability P (yi) exceeds a certain threshold τ , this sample contributes to the calculation1075
of the unlabeled loss for the current batch. The cross-entropy loss is computed as if the true label of this sample is class i.1076

Mean-Teacher constructs the unlabeled loss by enforcing consistency between the model’s output for a given sample and1077
the output of the same sample from the Exponential Moving Average (EMA) model.1078

MixMatch uses the MixUp [74] technique on both labeled data (features and labels) and unlabeled data (features and1079
guessed labels) within each batch to produce transformed labeled and unlabeled data. The labeled and unlabeled losses are1080
then calculated using these transformed samples. Specifically, the unlabeled loss is derived from the mean squared error1081
between the model’s output for the transformed unlabeled samples and their corresponding transformed guessed labels.1082

FixMatch generates two augmentation of an unlabeled sample, one with weak augmentation and the other using strong1083
augmentations (e.g., RandAug [20]). The unlabeled loss is then formulated by enforcing the model’s output for the strongly1084
augmented sample to closely resemble that of the weakly augmented sample using cross-entropy loss.1085

FlexMatch builds directly upon FixMatch by incorporating a class-specific threshold on the unlabeled samples during1086
training.1087

CoMatch marks the first introduction of contrastive learning into semi-supervised learning. The model is equipped with1088
two distinct heads: a classification head, which outputs class probabilities for a given sample, and a projection head, which1089
maps the sample into a low-dimensional embedding. These two components interact in a unique manner. The projection1090
head-derived embeddings inform the similarities between different samples, which are then used to refine the pseudo-labels1091
against which the classification head is trained. Subsequently, these pseudo-labels constitute a pseudo-label graph that trains1092
the embedding graph produced by the projection head.1093

D.4. Self-supervised method details1094

In recent years, self-supervised learning algorithms have emerged rapidly and are known as one of the most popular field1095
of machine learning. These include contrastive learning, which involves learning representations by maximizing agreement1096
between differently augmented views of the same data [15, 34]; predictive models that forecast future instances in the data1097
sequence [55]; generative models that learn to generate new data similar to the input [14]; clustering-based approaches that1098
learn representations by grouping similar instances [8, 9]; context-based models that predict a specific part of the data from1099
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other parts [7, 23]; and hybrid models that combine various methods for more robust learning [16]. A more comprehensive 1100
review can be found in [41, 78]. 1101

Below, we provide for each selected self-supervised method a summary of its internal workings. 1102

SimCLR generates two augmented versions of each image. Then feed these pairs of images into a base encoder network 1103
to generate image embeddings. This encoder is followed by a projection head, which is a multilayer neural network, to map 1104
these embeddings to a space where contrastive loss can be applied. Next, calculate the contrastive loss. The idea is to make 1105
the embeddings of augmented versions of the same image (positive pairs) as similar as possible and to push apart embeddings 1106
from different images (negative pairs). The loss function used is NCE loss. 1107

MOCO V2 creates two augmented versions of each image. These pairs are processed by two encoder networks: a query 1108
encoder, and a key encoder updated by a moving average of the query encoder. The contrastive loss is computed by comparing 1109
a positive pair (the query and corresponding key) against numerous negative pairs drawn from a large queue of keys. 1110

Note on runtime: We notice that the performance on MoCo can be increased when Shuffling BN across multiple GPUs. 1111
However, to ensure a fair comparison given our single-GPU setup, we refrained from employing any techniques to simulate 1112
multiple GPUs on one, as this would change the encoder’s structure. 1113

SwAV begins by creating multiple augmented versions of each image. Then, these versions are input into a deep neural 1114
network to generate embeddings. Uses a clustering approach, called online stratified sampling, to predict assignments of each 1115
view’s prototypes (or cluster centers) to others, encouraging the model to match the representations of different augmentations 1116
of the same image. 1117

Note on runtime: We’ve observed that applying multiple augmentations can enhance the effectiveness of various methods. 1118
To prevent the results from being influenced by these augmentations, we’ve standardized the number of augmentations to two 1119
in SwAV, in line with the approach taken by other methods. 1120

BYOL starts by creating two differently augmented versions of each image. These versions are processed through two 1121
identical neural networks, known as the target and online networks, which include a backbone and a projection head. The 1122
online network is updated through backpropagation, while the target network’s weights are updated as a moving average 1123
of the online network’s weights. The unique aspect of BYOL is that it learns representations without the need for negative 1124
samples. 1125

SimSiam creates two differently augmented versions of each image. These versions are passed through two identical 1126
networks: one predictor network and one encoder network. The encoder network contains a backbone and a projection head. 1127

DINO utilizes two differently augmented images, processed by a student and a teacher network. The teacher’s weights 1128
evolve as a moving average of the student’s. The key idea is self-distillation, where the student’s outputs match the teacher’s 1129
for one view but differ for the other, without traditional negative samples. 1130

Barlow Twins processes two augmented views of an image through identical networks. The aim is to have similar repre- 1131
sentations between these networks while minimizing redundancy in their components, sidestepping the need for contrasting 1132
positive and negative pairs. 1133

E. Additional Analysis 1134

E.1. Hyperparameter Tuning and Model selection with realistic validation set 1135

E.1.1 Effectivness of Hyperparameter Tuning 1136

While Oliver et al. [54] caution that extensive hyperparameter search may be futile with realistic validation set. Our experi- 1137
ments on the 4 dataset show that the validation set performance for each examined algorithm rise substantially over the course 1138
of hyperparameter tuning. This increase in validation set performance further translates to increased test set performance. 1139

This means that for a chosen algorithm on a new dataset, following our hyperparameter tuning protocol (even with limited 1140
labeling budget and computation budget), we can obtain better generalization (measured by test set performance). 1141
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E.1.2 Differentiating Between Models1142

Oliver et al. [54] in their Fig 5 and 6 show that on SVHN, between 10 random samples of the validation set across several1143
level of validation set size (1000, 500, 250, 100), the validation accuracy of the trained Pi-model, VAT, Pseudo-labeling and1144
Mean Teacher model has substantial variability and overlap with each other. Thus, they caution that differentiating between1145
models might be infeasible with realistic validation set size.1146

In this study, we employ a relaxed notion of “realistic validation set”, by letting the validation set to be at most as large as1147
the training set. Our experiments cover validation set size 235 (TMED), 400 (Tissue), 450 (Path), 600 (AIROGS); test set size1148
2019 (TMED2), 47280 (Tissue), 7180 (Path), 6000 (AIROGS). Our experiment shows that within the wide range of methods1149
considered, differentiating between some models are possible. For example, we can see that MixMatch is clearly better than1150
Mean Teacher in TissueMNIST and PathMNIST, in both the validation set and test set, without overlap on the intervals. The1151
field of semi-supervised learning has made significant advancements in recent years. It is crucial to reevaluate previous1152
conclusions in light of the new developments.1153

E.1.3 Theoretical Analysis1154

Here, we show that the performance gain we observe on the test set are real. We perform the same theoretical analysis using1155
the Hoeffding’s inequality Hoeffding [35] as in Oliver et al. [54].1156

P(|V̄ − E[V ]| < p) > 1− 2 exp(−2np2) (3)1157

where V̄ is the empirical estimate of some model performance metric, E[V ] is its hypothetical true value, p is the desired1158
maximum deviation between our estimate and the true value, and n is the number of examples used.1159

On TissueMNIST, we have 47280 test samples, we will be more than 99.98% confident that the test accuracy is within 1%1160
of its true value. On Path, we have 7180 test samples, we will be more than 99% confident that the test accuracy is within 2%1161
its true value.1162

In Fig 1, we see that after hyperparameter tuning, the final test accuracy of each algorithms improves much more than 1%1163
on TissueMNIST and 2% on PathMNIST showing the efficacy of hyperparameter tuning.1164

Similarly, we can see that the difference between top-performing algorithms (e.g., MixMatch) and worst-performaning1165
alogrithm (e.g., Mean Teacher) is clearly larger then 1% on TissueMNIST, 2% on PathMNIST. Thus we can argue that1166
differentiation between certain methods are viable. Same analysis can also be applied to TMED-2 and AIROGS.1167
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F. Hyperparameter Details 1168

F.1. Search Range 1169

Below we show the search range of each hyperparameter. 1170
. 1171

Shared By All
Optimizer Adam
Learning rate schedule Cosine

1172

Labeled only
Batch size 64
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)

1173

MixUp
Batch size 64
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Beta shape α x,X ∼ Uniform(0.1, 10)

1174

Sup Contrast
Batch size 256
Learning rate 3× 10x, X ∼ Uniform(−5.5,−1.5)
Weight decay 4× 10x, X ∼ Uniform(−7.5,−3.5)
Temperature x,X ∼ Uniform(0.05, 0.15)

1175

FlexMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Unlabeled loss coefficient 10x, X ∼ Uniform(−1, 1)
Unlabeled loss warmup schedule No warmup
Pseudo-label threshold 0.95
Sharpening temperature 1.0

1176

FixMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Unlabeled loss coefficient 10x, X ∼ Uniform(−1, 1)
Unlabeled loss warmup schedule No warmup
Pseudo-label threshold 0.95
Sharpening temperature 1.0

1177

CoMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Unlabeled loss coefficient 10x, X ∼ Uniform(−1, 1)
Unlabeled loss warmup schedule No warmup
Contrastive loss coefficient 5× 10x, X ∼ Uniform(−1, 1)
Pseudo-label threshold 0.95
Sharpening temperature 0.2

1178

For TMED2, unlabeled batch size is set to 320 to reduce GPU memory usage
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MixMatch
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Beta shape α x,X ∼ Uniform(0.1, 1)
Unlabeled loss coefficient 7.5× 10x, X ∼ Uniform(0, 2)
Unlabeled loss warmup schedule linear
Sharpening temperature 0.5

1179

Mean Teacher
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Unlabeled loss coefficient 8× 10x, X ∼ Uniform(−1, 1)
Unlabeled loss warmup schedule linear

1180

Pseudo-label
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3× 10x, X ∼ Uniform(−5,−2)
Weight decay 4× 10x, X ∼ Uniform(−6,−3)
Unlabeled loss coefficient 10x, X ∼ Uniform(−1, 1)
Unlabeled loss warmup schedule Linear
Pseudo-label threshold 0.95

1181

SwAV
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)
Temperature x,X ∼ Uniform(0.07, 0.12)
number of prototypes 1× 10x, X ∼ Uniform(1, 3)

1182

MoCo
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)
Temperature x,X ∼ Uniform(0.07, 0.12)
Momentum x,X ∼ Uniform(0.99, 0.9999)

1183

SimCLR
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)
Temperature x,X ∼ Uniform(0.07, 0.12)

1184

SimSiam
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)

1185

In practice, we round each sampled α value to the nearest tenth decimal place
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BYOL
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)
Temperature x,X ∼ Uniform(0.07, 0.12)
Momentum x,X ∼ Uniform(0.99, 0.9999)

1186

DINO
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)
Temperature x,X ∼ Uniform(0.07, 0.12)
Momentum x,X ∼ Uniform(0.99, 0.9999)

1187

Barlow Twins
Batch size 256
Learning rate 1× 10x, X ∼ Uniform(−4.5,−1.5)
Weight decay 1× 10x, X ∼ Uniform(−6.5,−3.5)
Temperature x,X ∼ Uniform(0.07, 0.12)
Momentum x,X ∼ Uniform(0.99, 0.9999)

1188

F.2. Chosen Hyperparameters on TissueMNIST Used for Hyperparameter Transfer Experiments 1189

Below we report the chosen hyperparameters on TissueMNIST that are used in the hyperparameter transfer experiments. 1190

FlexMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00036 0.00016 0.00016 0.00068 0.00006
Weight decay 0.00259 0.00001 0.00371 0.00023 0.002103
Unlabeled loss coefficient 2.22 0.82 5.00 1.94 6.09

1191

FixMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00074 0.00034 0.00392 0.00102 0.00037
Weight decay 0.00045 0.00315 0.00001 0.00005 0.00058
Unlabeled loss coefficient 3.08 6.70 1.85 1.46 0.47

1192

CoMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00124 0.00145 0.00061 0.00026 0.00113
Weight decay 0.00042 0.00009 0.00005 0.00009 0.00017
Unlabeled loss coefficient 0.30 1.71 1.26 2.74 0.46
Contrastive loss coefficient 1.26 2.21 3.71 0.56 1.37

1193

MixMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00028 0.00003 0.00018 0.00009 0.00005
Weight decay 0.000005 0.00195 0.00005 0.00085 0.00082
Beta shape α 0.2 0.9 0.9 0.8 0.7
Unlabeled loss coefficient 9.13 37.96 8.06 25.16 11.17

1194

Mean Teacher
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00062 0.00022 0.00005 0.00128 0.00125
Weight decay 0.00189 0.00001 0.00008 0.00001 0.00001
Unlabeled loss coefficient 67.67 0.87 1.25 7.60 13.56

1195
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Pseudo-label
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00007 0.00021 0.00005 0.00063 0.00060
Weight decay 0.00033 0.00093 0.00383 0.00005 0.00087
Unlabeled loss coefficient 0.19 0.16 8.73 0.82 0.25

1196

SwAV
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00065 0.00325 0.00012 0.00086 0.00196
Weight decay 0.0001497 0.0000056 0.0000006 0.0000021 0.0000003
Number of prototypes 845 131 36 201 59

1197

MoCo
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00288 0.00023 0.00043 0.00005 0.02629
Weight decay 0.000002 0.0000008 0.0000003 0.0000005 0.0000004
temperature 0.09331 0.07097 0.10987 0.07414 0.07080
Momentum 0.99242 0.99672 0.99267 0.99950 0.99538

1198

SimCLR
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00217 0.00131 0.000640 0.00380 0.00136
Weight decay 0.00002 0.00001 0.00001 0.00001 0.00001
temperature 0.11719 0.10426 0.08652 0.07784 0.11478

1199

SimSiam
seed0 seed1 seed2 seed3 seed4

Learning rate 0.0002 0.00056 0.00013 0.00338 0.00098
Weight decay 0.000066 0.000046 0.000023 0.000001 0.000001

1200

BYOL
seed0 seed1 seed2 seed3 seed4

Learning rate 0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum 0.9928618 0.996167 0.9988484 0.9940063 0.9934791

1201

DINO
seed0 seed1 seed2 seed3 seed4

Learning rate 0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum 0.9928618 0.996167 0.9988484 0.9940063 0.9934791

1202

Barlow Twins
seed0 seed1 seed2 seed3 seed4

Learning rate 0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum 0.9928618 0.996167 0.9988484 0.9940063 0.9934791

1203
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