CVPR

#*****

CVPR 2024 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Appendix Contents
A Code and Data Splits for Reproducibility 13
B. Dataset Details 14
B.L Dataset Selection . . . . . . . . . . . L e e e e e 14
B.2 Class DesCription . . . . . . . o i i e e e e e e e e e e e e e e e e e e e e 14
C Additional Results 15
C.1. Impact of pretraining on accuracy-over-time profiles . . . . . . . . . ... ... o Lo, 15
C.2. Comparing validation profiles of accuracy-over-time . . . . . . . . . . . . . ... ot 16
C.3. Additional Evaluation Metrics . . . . . . . . . o o ot e e e e e e e e 17
C.4 Variance Across Trials . . . . . . . . L L L 17
D Algorithms Details 19
D.1 Algorithm : Random Hyperparameter searchonabudget . . . . . . . . . . . ... ... ... ... ...... 19
D.2 Hyperparameter transfer strategy . . . . . . . . . i i e e e e e e e e e e e e e e e e 20
D.3 Semi-supervised method details. . . . . . . . . .. L. L e 20
D.4 Self-supervised method details . . . . . . . . . . ... e 20
E Additional Analysis 21
E.1. Hyperparameter Tuning and Model selection with realistic validationset . . . . . ... ... ... ... ... 21
F. Hyperparameter Details 23
Fl.SearchRange . . . . . . . L e e e e 23
F.2. Chosen Hyperparameters on TissueMNIST Used for Hyperparameter Transfer Experiments . . . . . . . . .. 25

A. Code and Data Splits for Reproducibility

All code resources needed to reproduce our analysis can be found in our github repo

https://anonymous.4open.science/r/SSL-vs—-SSL-benchmark-48B0/README.md

The exact splits of the TissueMNIST, PathMNIST, TMED-2, AIROGS we used will also be provided upon acceptance.

Our codebase builds upon the open-source PyTorch repo by Suzuki [61]. We added many additional algorithms (we added
MixMatch, FixMatch, FlexMatch, and CoMatch, as well as all 7 self-supervised methods) and customized the experiments,
especially providing a runtime-budgeted hyperparameter tuning strategy as outlined in App. D.

Suzuki’s code was intended as a reimplementation in PyTorch of Oliver et al. [54]’s benchmark of semi-supervised learning
(while Oliver et al’s original repo was in Tensorflow, we prefer PyTorch).

In a way, this makes our repo a “cousin” of the codebase of Su et al. [60]’s fine-grained classification benchmark, because
their github repo also credits Suzuki’s repo as an ancestor.
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B.1. Dataset Selection

We selected PathMNIST and TissueMNIST from 12 candidate datasets in the MedMNIST collections [68, 69] by matching
two criteria: (i) contains at least 5 imbalanced classes; (ii) can build a large unlabeled set (at least 50000 images). Prior
experiments from dataset creator Yang et al. [69] suggest 28x28 resolution is a reasonable choice. They report that a larger

resolution (224x224) does not yield much more accurate classifiers for these two datasets.

B.2. Class Description

TissueMNIST contains images of human kidney cortex cells. The dataset contains 8 classes. See [69] for more details.

Class ID Abbreviation Description

0 CD/CT Collecting Duct, Connecting Tubule
1 DCT Distal Convoluted Tubule

2 GE Glomerular endothelial cells

3 IE Interstitial endothelial cells

4 LEU Leukocytes

5 POD Podocytes

6 PT Proximal Tubule Segments

7 TAL Thick Ascending Limb

PathMNIST contains patches from colorectal cancer histology slides that comprise of 9 tissue types. See [42, 69] for more

details.

Class ID Abbreviation Description

0 ADI adipose

1 BACK background

2 DEB debris

3 LYM lymphocytes

4 MUC mucus

5 MUS smooth muscle

6 NORM normal colon mucosa

7 STR cancer-associated stroma

8 TUM colorectal adenocarcinoma epithelium

TMED-2 contains 2D grayscale images captured from routine echocardiogram scans. In this study, we adopt the view

classification task from [36]. For more detail please see [36, 37]

Class ID Abbreviation Description

0 PLAX parasternal long axis
1 PSAX parasternal short axis
2 A2C apical 2-chamber
3 A4C apical 4-chamber

AIROGS is a dataset of color image of the retina. The binary classification task is to differentiate between referable

glaucoma and no referable glaucoma [22].

Class ID Abbreviation Description

0 No Glauc. no referable glaucoma
1 Glaucoma  referable glaucoma
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C. Additional Results 1017
C.1. Impact of pretraining on accuracy-over-time profiles 1018

To study the impact of pretraining, we compare the accuracy-over-time profiles of TissueMNIST and PathMNIST based on 1019

the two different initialization strategy.

1020

Fig. C.1 left column shows pretraining on ImageNet strategy, right column shows random initialization. On TissueMNIST, 1021
SimCLR (green) and BYOL (blue) are the top two methods in both cases. On PathMNIST, semi-supervised methods seem 1022
better: FixMatch and CoMatch are best on the pretraining case, with MixMatch and Flexmatch only a few points of balanced = 1023
accuracy lower. MixMatch and CoMatch are best in the random initialization case. 1024

Across both plots, pretraining does not seem to impact the top-performing methods’ ultimate accuracy by much. (e.g. 1025
by more than a few points of accuracy). However, with more limited time budgets (e.g. after only a few hours), we do see 1026
initialization from pretraining understandably tends to improve some methods. Pretraining time on a source dataset is NOT 1027

counted to the runtime reported in x-axis.
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Figure C.1. Balanced accuracy on test set over time for semi- and self-supervised methods, with (left) and without (right) initial weight
pretraining on ImageNet. Curves represent mean of each method at each time over 5 trials of Alg. D.1.

15



CVPR

#*****

1029

1030
1031
1032
1033
1034
1035

CVPR

#*****

CVPR 2024 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

C.2. Comparing validation profiles of accuracy-over-time

Fig. C.2 shows profiles of accuracy over time on the validation set, in contrast to the test set performance shown in the main

paper’s Fig. 1.

All curves here by definition must be monotonically increasing, because our unified algorithm selects new checkpoints
only when they improve the validation-set balanced accuracy metric. The important insight our work reveals is that the same
model checkpoints selected here, based on validation-set accuracy, also tend to produce improved test-set accuracy over time
(in Fig. 1). This helps provide empirical confidence in using realistically-sized validation sets.

50  TissueMNIST semi  self
ResNetl8 = MixMatB¥RELR
‘>U 45 EFIQMMtl@
= Mixlp
C
° Sl
U 40 - wy="5up
(@) = .
© .
_ ,_J
© 35 |7
[
b
30
01 2 4 8 16 32
hours
(a) TissueMNIST
1
° tMmED-2
_ WideRes28
g LR
C
(@]
U
(@)
©
©
O

(c) TMED2

100 PathMNIST semi self
ResNetl8 Eebaike
oaaeth
— 90 =
] = BlQ
> 1. SIMCLR
S 80 MikUp
o 70
O
®
_. 60
3
50
I
40
01 2 4 8 16
hours
(b) PathMNIST
AIROGS '

% ResNet18 ~RRMatE
. = Bt
© . —
>
g 75 Fle,)\(AMtBANO

EixMatc
J ' ~
o 70
o
Q0 65
60
01 2 4 8 16 32 64
hours
(d) AIROGS

Figure C.2. VALIDATION accuracy over time profiles of semi- and self-supervised methods on 4 datasets (panels a-d).All curves here
by definition must be monotonically increasing. We see that the increasing validation set performance translate to increasing test set

performance in Fig. 1.
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C.3. Additional Evaluation Metrics 1036
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Figure C.3. Upper: Resl8. Lower: Res50. The figure from left to right are Test Performance over time profiles of semi- and self-
supervised methods on AIROGS dataset across 4 metircs: Balanced Accuracy, AUC, Partial AUC for 90% - 100% specificity and
Sensitivity at 95% specificity (panels a-c). At each time, we report mean of each method over 5 trials of Alg. D.1.

C.4. Variance Across Trials 1037

In Fig. C.4 below, we explicitly visualize the variability in performance of each method across the 5 separate trials of Alg. D.1 1038
(most other figures show the mean of these 5 trials for visual clarity). 1039
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D. Algorithms Details
D.1. Algorithm : Random Hyperparameter search on a budget

Algorithm D.1 outlines our uniform hyperparameter tuning procedures used across all algorithms under comparison. The
algorithm requires three sources of data: a labeled training set £ = {X, Y}, an unlabeled set for training / = XY, and
a separate realistically-sized labeled validation set { XV Y4}, We further require some budget restrictions: a common
computational budget T (maximum number of hours), and a maximum training epoch per hyperparameter configuration F.

We proceed as follows: We begin by randomly sampling a hyperparameter configuration from a defined range (see Ap-
pendix F.1 for details). A model is then initialized and trained using the ADAM optimizer with the sampled hyperparameters.
Each configuration is trained for a maximum of E (200) epochs or stopped early if the validation performance does not
improve for 20 consecutive epochs. The model’s performance on the validation set is measured using balanced accuracy.
Upon completion of training for a given hyperparameter configuration (either after reaching maximum epoch F or after early
stopping), a new configuration is sampled and the process repeats until the total compute budget 7" is expended.

We track the best-so-far model performance every 30 minutes, and save the best-so-far model and its corresponding
validation and test performance. Semi-supervised algorithms simultaneously train the representation layers v and classifier
layer w, while self-supervised algorithms train the representation layers v for each epoch and then fine-tune a linear classifier
with weights w anew at the end of each epoch using sklearn logistic regression model [56] with representation parameters v
frozen.

Algorithm D.1 Unified Procedure for Training + Hyperparameter selection via random search

Input:

e Train set of features X paired with labels Y, with extra unlabeled features U

* Validation set of features X*? and labels Y

* Runtime budget 7', Max Epoch F

Output: Trained weights {v, w}, where v is the representation module, w is the classifier layer

1: while time elapsed < T do

2 A ~ DRAWHYPERS > Sample hyperparameters for pre-defined range
3 & < CREATEOPTIM(\) > Initialize stateful optimizer e.g., ADAM
4 {v,w} ~ INITWEIGHTS > Initialize model weights
5: for epocheinl,2,...,E do

6 if self-supervised then

7 v < TRAINONEEPOCH(U, v, ), €) > Optimize Eq. with AL = 0
8 w <— TRAINCLASSIFIER (Y, f, (X))

9 else if semi-supervised then

10: v, w < TRAINONEEPOCH(X, Y, U, v, w, \,§) > Optimize Eq.
11: else

12: v, w + TRAINONEEPOCH(X,Y, v, w, A, &) > Optimize Eq. with AU = 0
13: end if

14: me + CALCBALACC(XY, Y'Y v, w) > Record performance metric on val.
15: if first try or m, > m, then

16: Ve, Wy 4= UV, W5 Ay = A My < M > Update best config found so far
17: end if

18: if EARLYSTOP(m1, mo, ..., m,) or time elapsed > T then

19: break

20: end if

21: end for

22: end while
23: Teturn v,, Wy, Ay, My
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D.2. Hyperparameter transfer strategy

To make the most of limited labeled data, one potential strategy is to use the entire labeled set for training, reserving no
validation set at all, and thus relies on pre-established hyperparameters from other dataset/experiments. In this study, we
experiment with two scenarios: using pre-determined hyperparameters from 1. CIFAR-10, or 2. TissueMNIST. The CIFAR-
10 hyperparameters are sourced from public repositories, we ensure that our CIFAR-10 hyperparameter choices on our re-
implementation of the algorithms matches previously reported results in the literature. The TissueMNIST hyperparameters
originate from our experiments as depicted in Figure C.2 (a).

D.3. Semi-supervised method details.

Semi-supervised learning trains on the labeled and unlabeled data simultaneously, usually with the total loss being a weighted
sum of a labeled loss term and an unlabeled loss term. Different methods mainly differs in how unlabeled data is used to
form training signals. Many approaches have been proposed and refined over the past decades. These include co-training,
which involves training multiple classifiers on various views of the input data [6, 53]; graph-structure-based models [40, 76];
generative models [46, 47]; consistency regularization-based models that enforce consistent model outputs [4, 49, 62]; pseudo
label-based models that impute labels for unlabeled data [11, 50]; and hybrid models that combines several methods [58].
Comprehensive reviews can be found in Chapelle et al. [13], Van Engelen and Hoos [63], Zhu [77].

Among the deep classifier methods following Eq. (1), below we describe each method we selected and how its specific
unlabeled loss is constructed.

Pseudo-Labeling uses the current model to assign class probabilities to each sample in the unlabeled batch. If, for an unla-
beled sample, the maximum class probability P(y;) exceeds a certain threshold 7, this sample contributes to the calculation
of the unlabeled loss for the current batch. The cross-entropy loss is computed as if the true label of this sample is class 7.

Mean-Teacher constructs the unlabeled loss by enforcing consistency between the model’s output for a given sample and
the output of the same sample from the Exponential Moving Average (EMA) model.

MixMatch uses the MixUp [74] technique on both labeled data (features and labels) and unlabeled data (features and
guessed labels) within each batch to produce transformed labeled and unlabeled data. The labeled and unlabeled losses are
then calculated using these transformed samples. Specifically, the unlabeled loss is derived from the mean squared error
between the model’s output for the transformed unlabeled samples and their corresponding transformed guessed labels.

FixMatch generates two augmentation of an unlabeled sample, one with weak augmentation and the other using strong
augmentations (e.g., RandAug [20]). The unlabeled loss is then formulated by enforcing the model’s output for the strongly
augmented sample to closely resemble that of the weakly augmented sample using cross-entropy loss.

FlexMatch builds directly upon FixMatch by incorporating a class-specific threshold on the unlabeled samples during
training.

CoMatch marks the first introduction of contrastive learning into semi-supervised learning. The model is equipped with
two distinct heads: a classification head, which outputs class probabilities for a given sample, and a projection head, which
maps the sample into a low-dimensional embedding. These two components interact in a unique manner. The projection
head-derived embeddings inform the similarities between different samples, which are then used to refine the pseudo-labels
against which the classification head is trained. Subsequently, these pseudo-labels constitute a pseudo-label graph that trains
the embedding graph produced by the projection head.

D.4. Self-supervised method details

In recent years, self-supervised learning algorithms have emerged rapidly and are known as one of the most popular field
of machine learning. These include contrastive learning, which involves learning representations by maximizing agreement
between differently augmented views of the same data [15, 34]; predictive models that forecast future instances in the data
sequence [55]; generative models that learn to generate new data similar to the input [14]; clustering-based approaches that
learn representations by grouping similar instances [8, 9]; context-based models that predict a specific part of the data from
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other parts [7, 23]; and hybrid models that combine various methods for more robust learning [16]. A more comprehensive
review can be found in [41, 78].
Below, we provide for each selected self-supervised method a summary of its internal workings.

SimCLR generates two augmented versions of each image. Then feed these pairs of images into a base encoder network
to generate image embeddings. This encoder is followed by a projection head, which is a multilayer neural network, to map
these embeddings to a space where contrastive loss can be applied. Next, calculate the contrastive loss. The idea is to make
the embeddings of augmented versions of the same image (positive pairs) as similar as possible and to push apart embeddings
from different images (negative pairs). The loss function used is NCE loss.

MOCO V2 creates two augmented versions of each image. These pairs are processed by two encoder networks: a query
encoder, and a key encoder updated by a moving average of the query encoder. The contrastive loss is computed by comparing
a positive pair (the query and corresponding key) against numerous negative pairs drawn from a large queue of keys.

Note on runtime: We notice that the performance on MoCo can be increased when Shuffling BN across multiple GPUs.
However, to ensure a fair comparison given our single-GPU setup, we refrained from employing any techniques to simulate
multiple GPUs on one, as this would change the encoder’s structure.

SWAV  Dbegins by creating multiple augmented versions of each image. Then, these versions are input into a deep neural
network to generate embeddings. Uses a clustering approach, called online stratified sampling, to predict assignments of each
view’s prototypes (or cluster centers) to others, encouraging the model to match the representations of different augmentations
of the same image.

Note on runtime: We’ve observed that applying multiple augmentations can enhance the effectiveness of various methods.
To prevent the results from being influenced by these augmentations, we’ve standardized the number of augmentations to two
in SWAYV, in line with the approach taken by other methods.

BYOL starts by creating two differently augmented versions of each image. These versions are processed through two
identical neural networks, known as the target and online networks, which include a backbone and a projection head. The
online network is updated through backpropagation, while the target network’s weights are updated as a moving average
of the online network’s weights. The unique aspect of BYOL is that it learns representations without the need for negative
samples.

SimSiam creates two differently augmented versions of each image. These versions are passed through two identical
networks: one predictor network and one encoder network. The encoder network contains a backbone and a projection head.

DINO utilizes two differently augmented images, processed by a student and a teacher network. The teacher’s weights
evolve as a moving average of the student’s. The key idea is self-distillation, where the student’s outputs match the teacher’s
for one view but differ for the other, without traditional negative samples.

Barlow Twins processes two augmented views of an image through identical networks. The aim is to have similar repre-
sentations between these networks while minimizing redundancy in their components, sidestepping the need for contrasting
positive and negative pairs.

E. Additional Analysis
E.1. Hyperparameter Tuning and Model selection with realistic validation set
E.1.1 Effectivness of Hyperparameter Tuning

While Oliver et al. [54] caution that extensive hyperparameter search may be futile with realistic validation set. Our experi-
ments on the 4 dataset show that the validation set performance for each examined algorithm rise substantially over the course
of hyperparameter tuning. This increase in validation set performance further translates to increased test set performance.

This means that for a chosen algorithm on a new dataset, following our hyperparameter tuning protocol (even with limited
labeling budget and computation budget), we can obtain better generalization (measured by test set performance).
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E.1.2 Differentiating Between Models

Oliver et al. [54] in their Fig 5 and 6 show that on SVHN, between 10 random samples of the validation set across several
level of validation set size (1000, 500, 250, 100), the validation accuracy of the trained Pi-model, VAT, Pseudo-labeling and
Mean Teacher model has substantial variability and overlap with each other. Thus, they caution that differentiating between
models might be infeasible with realistic validation set size.

In this study, we employ a relaxed notion of “realistic validation set”, by letting the validation set to be at most as large as
the training set. Our experiments cover validation set size 235 (TMED), 400 (Tissue), 450 (Path), 600 (AIROGS); test set size
2019 (TMED2), 47280 (Tissue), 7180 (Path), 6000 (AIROGS). Our experiment shows that within the wide range of methods
considered, differentiating between some models are possible. For example, we can see that MixMatch is clearly better than
Mean Teacher in TissueMNIST and PathMNIST, in both the validation set and test set, without overlap on the intervals. The
field of semi-supervised learning has made significant advancements in recent years. It is crucial to reevaluate previous
conclusions in light of the new developments.

E.1.3 Theoretical Analysis

Here, we show that the performance gain we observe on the test set are real. We perform the same theoretical analysis using
the Hoeffding’s inequality Hoeffding [35] as in Oliver et al. [54].

P(|[V —E[V]| < p) > 1 — 2exp(—2np?) 3)

where V is the empirical estimate of some model performance metric, E[V] is its hypothetical true value, p is the desired
maximum deviation between our estimate and the true value, and n is the number of examples used.

On TissueMNIST, we have 47280 test samples, we will be more than 99.98% confident that the test accuracy is within 1%
of its true value. On Path, we have 7180 test samples, we will be more than 99% confident that the test accuracy is within 2%
its true value.

In Fig 1, we see that after hyperparameter tuning, the final test accuracy of each algorithms improves much more than 1%
on TissueMNIST and 2% on PathMNIST showing the efficacy of hyperparameter tuning.

Similarly, we can see that the difference between top-performing algorithms (e.g., MixMatch) and worst-performaning
alogrithm (e.g., Mean Teacher) is clearly larger then 1% on TissueMNIST, 2% on PathMNIST. Thus we can argue that
differentiation between certain methods are viable. Same analysis can also be applied to TMED-2 and AIROGS.
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F. Hyperparameter Details
F.1. Search Range

Below we show the search range of each hyperparameter.

Shared By All
Optimizer Adam
Learning rate schedule Cosine
Labeled only
Batch size 64
Learning rate 3 x 10%, X ~ Uniform(—5, —2)
Weight decay 4 x 10%, X ~ Uniform(—6, —3)
MixUp
Batch size 64

Learning rate 3 x 10*, X ~ Uniform(—5, —2)
Weight decay 4 x 10%, X ~ Uniform(—6, —3)
Beta shape o x, X ~ Uniform(0.1, 10)

Sup Contrast
Batch size 256
Learning rate 3 x 10%, X ~ Uniform(—5.5, —1.5)
Weight decay 4 x 10*, X ~ Uniform(—7.5, —3.5)

Temperature x, X ~ Uniform(0.05,0.15)

FlexMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3 x 10*, X ~ Uniform(—5, —2)
Weight decay 4 x 10%, X ~ Uniform(—6, —3)
Unlabeled loss coefficient 10%, X ~ Uniform(—1,1)
Unlabeled loss warmup schedule No warmup
Pseudo-label threshold 0.95
Sharpening temperature 1.0

FixMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3 x 10*, X ~ Uniform(—5, —2)
Weight decay 4 x 10*, X ~ Uniform(—6, —3)
Unlabeled loss coefficient 10*, X ~ Uniform(—1,1)
Unlabeled loss warmup schedule No warmup
Pseudo-label threshold 0.95
Sharpening temperature 1.0

CoMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3 x 10%, X ~ Uniform(—5, —2)
Weight decay 4 x 10*, X ~ Uniform(—6, —3)
Unlabeled loss coefficient 10%, X ~ Uniform(—1, 1)
Unlabeled loss warmup schedule No warmup
Contrastive loss coefficient 5 x 107, X ~ Uniform(—1,1)
Pseudo-label threshold 0.95
Sharpening temperature 0.2

For TMED?2, unlabeled batch size is set to 320 to reduce GPU memory usage
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MixMatch

Labeled batch size

64

Unlabeled batch size

64

Learning rate

3 x 10*, X ~ Uniform(—5, —2)

Weight decay

4 x 10%, X ~ Uniform(—6, —3)

Beta shape «

x, X ~ Uniform(0.1,1)

Unlabeled loss coefficient

7.5 x 107, X ~ Uniform(0, 2)

Unlabeled loss warmup schedule linear
Sharpening temperature 0.5
Mean Teacher
Labeled batch size 64
Unlabeled batch size 64

Learning rate

3 x 10%, X ~ Uniform(—5, —2)

Weight decay 4 x 10*, X ~ Uniform(—6, —3)

Unlabeled loss coefficient 8 x 10%, X ~ Uniform(—1, 1)

Unlabeled loss warmup schedule linear
Pseudo-label

Labeled batch size 64

Unlabeled batch size 64

Learning rate

3 x 10*, X ~ Uniform(—5, —2)

Weight decay

4 x 10*, X ~ Uniform(—6, —3)

Unlabeled loss coefficient

10*, X ~ Uniform(—1,1)

Unlabeled loss warmup schedule Linear

Pseudo-label threshold 0.95
SwAV

Batch size

Learning rate 1 x 107, X ~ Uniform(—4.5, —1.5)

Weight decay 1 x 10*, X ~ Uniform(—6.5, —3.5

Temperature x, X ~ Uniform(0.07,0.12

number of prototypes

1 x 10%, X ~ Uniform(1, 3

MoCo
Batch size 256
Learning rate 1 x 10*, X ~ Uniform(—4.5, —1.5)
Weight decay 1 x 10%, X ~ Uniform(—6.5, —3.5)
Temperature x, X ~ Uniform(0.07,0.12)
Momentum x, X ~ Uniform(0.99, 0.9999)
SimCLR
Batch size 256
Learning rate 1 x 10%, X ~ Uniform(—4.5, —1.5)
Weight decay 1 x 10%, X ~ Uniform(—6.5, —3.5)
Temperature x, X ~ Uniform(0.07,0.12)
SimSiam
Batch size 256
Learning rate 1 x 10*, X ~ Uniform(—4.5, —1.5)
Weight decay 1 x 10%, X ~ Uniform(—6.5, —3.5)

In practice, we round each sampled « value to the nearest tenth decimal place



BYOL
Batch size 256
Learning rate 1 x 10%, X ~ Uniform(—4.5, —1.5)

Weight decay 1 x 10%, X ~ Uniform(—6.5, —3.5)
Temperature x, X ~ Uniform(0.07,0.12)
Momentum x, X ~ Uniform(0.99,0.9999)
DINO
Batch size 256
Learning rate 1 x 10”, X ~ Uniform(—4.5, —1.5)
Weight decay 1 x 10%, X ~ Uniform(—6.5, —3.5)
Temperature x, X ~ Uniform(0.07,0.12)
Momentum x, X ~ Uniform(0.99,0.9999)

Barlow Twins
Batch size 256
Learning rate 1 x 107, X ~ Uniform(—4.5, —1.5)

Weight decay 1 x 10%, X ~ Uniform(—6.5, —3.5)
Temperature x, X ~ Uniform(0.07,0.12)
Momentum x, X ~ Uniform(0.99, 0.9999)

F.2. Chosen Hyperparameters on TissueMNIST Used for Hyperparameter Transfer Experiments

Below we report the chosen hyperparameters on TissueMNIST that are used in the hyperparameter transfer experiments.

FlexMatch
seed0  seedl seed2  seed3 seed4
Learning rate 0.00036 0.00016 0.00016 0.00068 0.00006
Weight decay 0.00259 0.00001 0.00371 0.00023 0.002103
Unlabeled loss coefficient 2.22 0.82 5.00 1.94 6.09
FixMatch
seed0  seedl seed2 seed3 seed4
Learning rate 0.00074 0.00034 0.00392 0.00102 0.00037
Weight decay 0.00045 0.00315 0.00001 0.00005 0.00058
Unlabeled loss coefficient 3.08 6.70 1.85 1.46 0.47
CoMatch
seed0  seedl seed2 seed3 seed4
Learning rate 0.00124 0.00145 0.00061 0.00026 0.00113
Weight decay 0.00042 0.00009 0.00005 0.00009 0.00017

Unlabeled loss coefficient 0.30 1.71 1.26 2.74 0.46
Contrastive loss coefficient 1.26 2.21 3.71 0.56 1.37

MixMatch
seed0  seedl seed2  seed3 seed4
Learning rate 0.00028 0.00003 0.00018 0.00009 0.00005
Weight decay 0.000005 0.00195 0.00005 0.00085 0.00082
Beta shape o 0.2 0.9 0.9 0.8 0.7

Unlabeled loss coefficient 9.13 37.96 8.06 25.16 11.17

Mean Teacher
seed0  seedl seed2 seed3 seed4
Learning rate 0.00062 0.00022 0.00005 0.00128 0.00125
Weight decay 0.00189 0.00001 0.00008 0.00001 0.00001
Unlabeled loss coefficient ~ 67.67 0.87 1.25 7.60 13.56
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Pseudo-label

seed0  seedl seed2  seed3 seed4

Learning rate

0.00007 0.00021 0.00005 0.00063 0.00060

Weight decay 0.00033 0.00093 0.00383 0.00005 0.00087
Unlabeled loss coefficient 0.19 0.16 8.73 0.82 0.25
SwAV
seed0 seedl seed2 seed3
Learning rate 0.00065  0.00325 0.00012  0.00086

Weight decay 0.0001497 0.0000056 0.0000006 0.0000021 0.0000003
Number of prototypes 845 131 36 201
MoCo
seed0 seed] seed2 seed3 seed4
Learning rate  0.00288  0.00023  0.00043  0.00005  0.02629
Weight decay 0.000002 0.0000008 0.0000003 0.0000005 0.0000004
temperature 0.09331  0.07097  0.10987 0.07414  0.07080
Momentum 0.99242  0.99672  0.99267 0.99950  0.99538
SimCLR
seed0  seedl seed2 seed3  seedd
Learning rate 0.00217 0.00131 0.000640 0.00380 0.00136
Weight decay 0.00002 0.00001 0.00001 0.00001 0.00001
temperature  0.11719 0.10426 0.08652 0.07784 0.11478
SimSiam
seed0 seedl seed2 seed3 seed4

Learning rate

0.0002 0.00056 0.00013 0.00338 0.00098

Weight decay 0.000066 0.000046 0.000023 0.000001 0.000001
BYOL
seed0 seedl seed2 seed3 seed4
Learning rate  0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum  0.9928618 0.996167 0.9988484 0.9940063 0.9934791
DINO
seed0 seedl seed2 seed3 seed4
Learning rate  0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum  0.9928618 0.996167 0.9988484 0.9940063 0.9934791
Barlow Twins
seed0 seed1 seed2 seed3 seed4
Learning rate  0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum  0.9928618 0.996167 0.9988484 0.9940063 0.9934791
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