#include #include #include #include // 打印数独矩阵 void printMatrix(int matrix[9][9]) { for (int i = 0; i < 9; i++) { if (i == 0 || i == 3 || i == 6) { printf("|-----------------------|\n"); } for (int j = 0; j < 9; j++) { if (j == 0 || j == 3 || j == 6) { printf("| "); } if (matrix[i][j] == 0) { printf(". "); } else { printf("%d ", matrix[i][j]); } if (j == 8) { printf("|\n"); } } if (i == 8) { printf("|-----------------------|\n"); } } } // 判断数字是否在某行中出现 int isInRow(int matrix[9][9], int row, int num) { for (int i = 0; i < 9; i++) { if (matrix[row][i] == num) { return 1; } } return 0; } // 判断数字是否在某 3x3 子矩阵中出现 int isInGroup(int matrix[9][9], int startRow, int startCol, int num) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (matrix[startRow + i][startCol + j] == num) { return 1; } } } return 0; } // 判断数字是否在某行中已被使用 bool usedInRow(int matrix[9][9], int row, int num) { for (int col = 0; col < 9; col++) { if (matrix[row][col] == num) { return true; } } return false; } // 判断数字是否在某列中已被使用 bool usedInCol(int matrix[9][9], int col, int num) { for (int row = 0; row < 9; row++) { if (matrix[row][col] == num) { return true; } } return false; } // 判断数字是否在某 3x3 子矩阵中已被使用 bool usedInBox(int matrix[9][9], int boxStartRow, int boxStartCol, int num) { for (int row = 0; row < 3; row++) { for (int col = 0; col < 3; col++) { if (matrix[row + boxStartRow][col + boxStartCol] == num) { return true; } } } return false; } // 判断在特定位置放置特定数字是否安全 bool isSafe(int matrix[9][9], int row, int col, int num) { return!usedInRow(matrix, row, num) && !usedInCol(matrix, col, num) && !usedInBox(matrix, row - row % 3, col - col % 3, num); } // 查找空位置 bool findEmptyLocation(int matrix[9][9], int* row, int* col) { for (*row = 0; *row < 9; (*row)++) { for (*col = 0; *col < 9; (*col)++) { if (matrix[*row][*col] == 0) { return true; } } } return false; } // 解决数独问题 bool solveSudoku(int matrix[9][9]) { int row, col; if (!findEmptyLocation(matrix, &row, &col)) { return true; // 数独已解决 } for (int num = 1; num <= 9; num++) { if (isSafe(matrix, row, col, num)) { matrix[row][col] = num; if (solveSudoku(matrix)) { return true; } matrix[row][col] = 0; // 回溯 } } return false; } // 检查行是否符合数独规则 bool checkRows(int matrix[9][9]) { for (int i = 0; i < 9; i++) { int count[9] = { 0 }; for (int j = 0; j < 9; j++) { if (matrix[i][j] > 0 && matrix[i][j] <= 9) { int num = matrix[i][j] - 1; if (count[num] > 0) { return false; } count[num]++; } } } return true; } // 检查列是否符合数独规则 bool checkColumns(int matrix[9][9]) { for (int j = 0; j < 9; j++) { int count[9] = { 0 }; for (int i = 0; i < 9; i++) { if (matrix[i][j] > 0 && matrix[i][j] <= 9) { int num = matrix[i][j] - 1; if (count[num] > 0) { return false; } count[num]++; } } } return true; } // 检查 3x3 子矩阵是否符合数独规则 bool checkSubMatrices(int matrix[9][9]) { for (int row = 0; row < 9; row += 3) { for (int col = 0; col < 9; col += 3) { int count[9] = { 0 }; for (int i = row; i < row + 3; i++) { for (int j = col; j < col + 3; j++) { if (matrix[i][j] > 0 && matrix[i][j] <= 9) { int num = matrix[i][j] - 1; if (count[num] > 0) { return false; } count[num]++; } } } } } return true; } // 判断整个矩阵是否是有效的数独矩阵 bool isSudokuMatrix(int matrix[9][9]) { return checkRows(matrix) && checkColumns(matrix) && checkSubMatrices(matrix); } int main() { printf("The original Sudoku matrix: \n"); srand(time(NULL)); int matrix[9][9] = { 0 }; int numbers[9] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; for (int group = 0; group < 3; group++) { int usedNumbers[9] = { 0 }; for (int i = 0; i < 9; i++) { usedNumbers[i] = numbers[i]; } for (int i = 0; i < 9; i++) { int idx = rand() % (9 - i); int temp = usedNumbers[idx]; usedNumbers[idx] = usedNumbers[8 - i]; usedNumbers[8 - i] = temp; } for (int row = 0; row < 3; row++) { int count = 0; while (count < 3) { int num; do { int idx = rand() % 9; num = usedNumbers[idx]; } while (num == 0 || isInRow(matrix, group * 3 + row, num) || isInGroup(matrix, group * 3, 0, num)); int pos; do { pos = rand() % 9; } while (matrix[group * 3 + row][pos] != 0); matrix[group * 3 + row][pos] = num; count++; } } } for (int row = 0; row < 9; row++) { int uniqueNumbers[9] = { 0 }; int uniqueCount = 0; for (int i = 0; i < 9; i++) { if (matrix[row][i] != 0 && !uniqueNumbers[matrix[row][i] - 1]) { uniqueNumbers[matrix[row][i] - 1] = 1; uniqueCount++; } } if (uniqueCount > 3) { while (uniqueCount > 3) { int idx = rand() % 9; if (matrix[row][idx] != 0 && uniqueNumbers[matrix[row][idx] - 1]) { matrix[row][idx] = 0; uniqueCount--; } } } else if (uniqueCount < 3) { while (uniqueCount < 3) { int num; do { num = rand() % 9 + 1; } while (uniqueNumbers[num - 1]); int idx; do { idx = rand() % 9; } while (matrix[row][idx] != 0); matrix[row][idx] = num; uniqueNumbers[num - 1] = 1; uniqueCount++; } } } printMatrix(matrix); bool valid = isSudokuMatrix(matrix); if (valid) { printf("True:Valid initial Sudoku matrix!\n"); if (solveSudoku(matrix)) { printf("The solution of Sudoku matrix:\n"); printMatrix(matrix); } else { printf("No solution!\n"); } } else { printf("False:Invalid initial Sudoku matrix!\n"); for (int j = 0; j < 9; j++) { int count[9] = { 0 }; for (int i = 0; i < 9; i++) { if (matrix[i][j] > 0 && matrix[i][j] <= 9) { int num = matrix[i][j] - 1; if (count[num] > 0) { printf("The number %d in the col %d has been used!\n", matrix[i][j], j); break; } count[num]++; } } } printf("No solution!\n"); } return 0; }