|
|
|
@ -0,0 +1,55 @@
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
#include <ctime>
|
|
|
|
|
#include <arm_neon.h>
|
|
|
|
|
// 定义向量大小
|
|
|
|
|
#define SIZE 1024
|
|
|
|
|
// 原始的向量加法函数
|
|
|
|
|
void vector_add(float* A, float* B, float* C, int size) {
|
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
|
|
|
C[i] = A[i] + B[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 使用NEON指令优化的向量加法函数
|
|
|
|
|
void vector_add_optimized(float* A, float* B, float* C, int size) {
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 0; i < size - 3; i += 4) {
|
|
|
|
|
// 向量加载,将A和B的4个连续元素加载到float32x4_t类型的向量中
|
|
|
|
|
float32x4_t a_vec = vld1q_f32(&A[i]);
|
|
|
|
|
float32x4_t b_vec = vld1q_f32(&B[i]);
|
|
|
|
|
float32x4_t c_vec = vaddq_f32(a_vec, b_vec);
|
|
|
|
|
// 将结果存储到C中
|
|
|
|
|
vst1q_f32(&C[i], c_vec);
|
|
|
|
|
}
|
|
|
|
|
for (; i < size; i++) {
|
|
|
|
|
C[i] = A[i] + B[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
int main() {
|
|
|
|
|
float A[SIZE];
|
|
|
|
|
float B[SIZE];
|
|
|
|
|
float C[SIZE];
|
|
|
|
|
float C_optimized[SIZE];
|
|
|
|
|
|
|
|
|
|
// 利用for循环将A和B向量的每个元素随机初始化
|
|
|
|
|
for (int i = 0; i < SIZE; i++) {
|
|
|
|
|
A[i] = (float)(rand() % 100);
|
|
|
|
|
B[i] = (float)(rand() % 100);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 测试原始向量加法函数的运行时间
|
|
|
|
|
clock_t start_time_original = clock();
|
|
|
|
|
vector_add(A, B, C, SIZE);
|
|
|
|
|
clock_t end_time_original = clock();
|
|
|
|
|
double elapsed_time_original = (double)(end_time_original - start_time_original) / CLOCKS_PER_SEC;
|
|
|
|
|
|
|
|
|
|
clock_t start_time_optimized = clock();
|
|
|
|
|
vector_add_optimized(A, B, C_optimized, SIZE);
|
|
|
|
|
clock_t end_time_optimized = clock();
|
|
|
|
|
double elapsed_time_optimized = (double)(end_time_optimized - start_time_optimized) / CLOCKS_PER_SEC;
|
|
|
|
|
|
|
|
|
|
printf("original time: %lf s\n", elapsed_time_original);
|
|
|
|
|
// 输出NEON优化后的向量加法的运行时间
|
|
|
|
|
printf("NEON optimized time: %lf s\n", elapsed_time_optimized);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|