#include #include #include #include // 定义向量大小 #define SIZE 1024 // 原始的向量加法函数 void vector_add(float* A, float* B, float* C, int size) { for (int i = 0; i < size; i++) { C[i] = A[i] + B[i]; } } // 使用NEON指令优化的向量加法函数 void vector_add_optimized(float* A, float* B, float* C, int size) { int i; for (i = 0; i < size - 3; i += 4) { // 向量加载,将A和B的4个连续元素加载到float32x4_t类型的向量中 float32x4_t a_vec = vld1q_f32(&A[i]); float32x4_t b_vec = vld1q_f32(&B[i]); float32x4_t c_vec = vaddq_f32(a_vec, b_vec); // 将结果存储到C中 vst1q_f32(&C[i], c_vec); } for (; i < size; i++) { C[i] = A[i] + B[i]; } } int main() { float A[SIZE]; float B[SIZE]; float C[SIZE]; float C_optimized[SIZE]; // 利用for循环将A和B向量的每个元素随机初始化 for (int i = 0; i < SIZE; i++) { A[i] = (float)(rand() % 100); B[i] = (float)(rand() % 100); } // 测试原始向量加法函数的运行时间 clock_t start_time_original = clock(); vector_add(A, B, C, SIZE); clock_t end_time_original = clock(); double elapsed_time_original = (double)(end_time_original - start_time_original) / CLOCKS_PER_SEC; clock_t start_time_optimized = clock(); vector_add_optimized(A, B, C_optimized, SIZE); clock_t end_time_optimized = clock(); double elapsed_time_optimized = (double)(end_time_optimized - start_time_optimized) / CLOCKS_PER_SEC; printf("original time: %lf s\n", elapsed_time_original); // 输出NEON优化后的向量加法的运行时间 printf("NEON optimized time: %lf s\n", elapsed_time_optimized); return 0; }