diff --git a/main.py b/main.py new file mode 100644 index 0000000..ff9a13a --- /dev/null +++ b/main.py @@ -0,0 +1,105 @@ +import requests +from bs4 import BeautifulSoup +import time +import pandas as pd +from collections import Counter +from wordcloud import WordCloud +import matplotlib.pyplot as plt +cnt = 0 +# 已爬取视频数 +danmuku_all = [] +# 弹幕库 + +headers = { + "cookie": "cookie", + "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36" +} + + +def get_cid(bvid): + url = f"https://api.bilibili.com/x/player/pagelist?bvid={bvid}" + try: + response = requests.get(url, headers=headers, timeout=10) + response.raise_for_status() + Json = response.json() + return Json['data'][0]['cid'] + except requests.exceptions.RequestException as e: + print(f"请求失败: {e}") + return None + + +def get_danmuku(cid): + if cid is None: + return [] + url = f"https://comment.bilibili.com/{cid}.xml" + try: + response = requests.get(url, headers=headers, timeout=10) + response.encoding = 'utf-8' + soup = BeautifulSoup(response.text, 'xml') + return [i.text for i in soup.find_all('d')] + except requests.exceptions.RequestException as e: + print(f"请求失败: {e}") + return [] + + +for Page in range(1, 22): # 1到22页够300个视频 + url = f'https://api.bilibili.com/x/web-interface/search/type?search_type=video&keyword=巴黎奥运会&page={Page}' + try: + response = requests.get(url, headers=headers, timeout=10) + response.raise_for_status() + Json = response.json() + results = Json['data']['result'] + for result in results: + cid = get_cid(result['bvid']) + danmuku = get_danmuku(cid) + danmuku_all.extend(danmuku) + cnt += 1 + if cnt >= 300: + break + if cnt >= 300: + break + except requests.exceptions.RequestException as e: + print(f"请求失败: {e}") +time.sleep(1) # 延时1秒防止被屏蔽 + + +def filter_danmuku(danmuku_list, keywords): + # 筛选包含指定关键词的弹幕 + keywords_lower = [keyword.lower() for keyword in keywords] # 关键词小写 + filtered = [d for d in danmuku_list if any(keyword in d.lower() for keyword in keywords_lower)] + return filtered + +# 读取弹幕文件 +with open('所有视频弹幕.txt', 'r', encoding='utf-8') as file: + danmuku_all = file.readlines() + +# 筛选包含关键词的弹幕 +keywords = ['AI配音' , 'ai配音' , '人工智能' , 'ai画图' , 'AI画图' , 'AI识曲' , 'AI生成' , '神经网络' , '卷积神经网络' , '循环神经网络' , '智能家居' , '自动驾驶' , '智能推荐' , '智能算法' , '强化学习' , '计算机视觉' , 'ai还原' , 'ai合成'] +filtered_danmuku = filter_danmuku(danmuku_all, keywords) +# 统计弹幕数量 +counter = Counter(filtered_danmuku) +most_common = counter.most_common(8) +# 将结果按列写入Excel +data = {'弹幕内容': [content.strip() for content, count in most_common], + '数量': [count for content, count in most_common]} +df = pd.DataFrame(data) +df.to_excel('AI_人工智能_弹幕统计.xlsx', index=False) +print("前8位弹幕统计已保存到 'AI_人工智能_弹幕统计.xlsx'.") +font_path = r'C:\Windows\Fonts\simhei.ttf' +try: + df = pd.read_excel('AI_人工智能_弹幕统计.xlsx') + if '弹幕内容' not in df.columns: + raise ValueError("Excel 文件中没有找到 '弹幕内容' 列") + text = ' '.join(df['弹幕内容'].dropna()) + wordcloud = WordCloud(font_path=font_path, width=800, height=400, background_color='white').generate(text) + plt.figure(figsize=(10, 5)) + plt.imshow(wordcloud, interpolation='bilinear') + plt.axis('off') + plt.show() + wordcloud.to_file('词云图.png') +except FileNotFoundError: + print("文件未找到,请检查文件路径") +except ValueError as ve: + print(ve) +except Exception as e: + print(f"发生错误: {e}") \ No newline at end of file