import numpy as np import pandas as pd import lqmtest_x3_5_pool import lqmtest_x3_2_load_data import lqmtest_x3_4_conv_proc import lqmtest_x3_6_fullconn import lqmtest_x3_7_nonlinear import lqmtest_x3_8_classify class Label: # 标签 # 设置标签类别列表并将其转化为one-hot向量的形式 def setlabel_para(self): label_list = input("请输入标签类别列表(用逗号分隔):") label_list = [int(x) for x in label_list.split(',')] num_classes = len(label_list) identity_matrix = np.eye(num_classes) label_dict = {label: identity_matrix[i] for i, label in enumerate(label_list)} return label_dict # 读取样本数据集,遍历每个样本,并将样本和对应的标签组成元组 def label_proc(self, samples, labels, label_dict): labeled_samples = [(sample, label_dict[label]) for sample, label in zip(samples, labels)] return labeled_samples def label_array(self, i): path_csv = 'train.csv' # 读取标签数据 df = pd.read_csv(path_csv, header=None, skiprows=range(0, i * 32), nrows=(i + 1) * 32 - i * 32) # 将标签数据转化成数组 right_label = df.iloc[:, 0].tolist() right_label = list(map(int, right_label)) right_label = [x for x in right_label] return right_label if __name__ == '__main__': DataSet = lqmtest_x3_2_load_data.Data_Class("DataSet1", 1, "数据集1", [], 120, 330) # setload_data()函数,获取加载数据集的参数 DataPara = DataSet.SetDataPara() train_images, test_images = DataSet.LoadData(DataPara) Conv = lqmtest_x3_4_conv_proc.Conv_Class("Conv1", 2, "卷积1", [], 250, 330) ConvPara = Conv.SetConvPara() for i in range(len(train_images) // 32): images = train_images[i * 32:(i + 1) * 32] conv_images = [] # 存储卷积处理后的图片的列表 for image in images: # 获取训练集的图片数据 dim = len(image.shape) # 获取矩阵的维度 if dim == 2: # 如果是二维矩阵,则转化为三维矩阵 image_h, image_w = image.shape image = np.reshape(image, (1, image_h, image_w)) # 调用ConvProc()函数,根据ConvPara参数完成卷积计算 output = Conv.ConvProc(image, ConvPara) conv_images.append(output) # 将卷积结果存储到列表 elif dim == 3: # 若为三维矩阵,则保持不变直接卷积处理 output = Conv.ConvProc(image, ConvPara) conv_images.append(output) # 将卷积处理后的图片列表转换为数组形式,方便后续处理 conv_images = np.array(conv_images) Pool = lqmtest_x3_5_pool.Pool_Class("Pool1", 3, "最大池化1", [], 380, 330) PoolPara = Pool.SetPollPara() pool_images = [] # 存储池化处理后的图片的列表 for image in conv_images: # 获取卷积后的图片数据 output = Pool.MaxPoolProc(image, PoolPara) pool_images.append(output) # 将池化结果存储到列表 # 将池化处理后的图片列表转换为数组形式,方便后续处理 pool_images = np.array(pool_images) _, _, poolH, poolW = pool_images.shape FullConn = lqmtest_x3_6_fullconn.FullConn_Class("FullConn1", 4, "全连接1", [], 510, 330) FullConnPara = FullConn.SetFullConnPara(poolH, poolW) fullconn_images = [] # 存储全连接处理后的图片的列表 for image in pool_images: # 获取池化后的图片数据 output = FullConn.FullConnProc(image, FullConnPara) fullconn_images.append(output) # 将全连接处理后的结果存储到列表 # 将全连接处理后的图片列表转换为数组形式,方便后续处理 fullconn_images = np.array(fullconn_images) Nonline = lqmtest_x3_7_nonlinear.Nonline_Class("Nonline1", 5, "非线性函数1", [], 640, 330) NonLPara = Nonline.SetNonLPara() # 存储非线性处理后的图片的列表 nonlinear_images = [] for image in fullconn_images: # 获取全连接处理后的图片数据 output = Nonline.NonlinearProc(image, NonLPara) # 将非线性处理后的结果存储到列表 nonlinear_images.append(output) # 将非线性处理后的图片列表转换为数组形式,方便后续处理 nonlinear_images = np.array(nonlinear_images) Classifier=lqmtest_x3_8_classify.Classifier_Class("Classifier1", 6, "分类1", [], 780, 330) ClassifyPara = Classifier.SetClassifyPara() classifier_images = [] # 存储分类处理后的图片的列表 prob_images = [] # 存储分类处理后的概率向量 for image in nonlinear_images: # 获取非线性处理后的图片数据 # 调用softmax函数,得到概率分布向量 prob = Classifier.softmax(image) prob_images.append(prob) # 将概率向量结果存储到列表 output = Classifier.ClassifierProc(image, ClassifyPara) classifier_images.append(output) # 将分类结果存储到列表 # 将分类的结果列表转换为数组形式,方便后续处理 classifier_images = np.array(classifier_images) LabelPara = Label() label_dict = LabelPara.setlabel_para() right_label = LabelPara.label_array(i) labeled_samples = LabelPara.label_proc(images, right_label, label_dict)