You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
5.3 KiB

import cv2
import numpy as np
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
# 子窗口布局
from sub_windows import ui_sub_window_5
class SubWindow(QMainWindow):
def __init__(self):
super().__init__(parent=None)
self.ui = ui_sub_window_5.Ui_Form()
self.ui.setupUi(self)
self.ui_init()
self.cv_srcImage = None
self.cv_equImage = None
def ui_init(self):
self.ui.pushButton_open_file.clicked.connect(self.open_file)
self.ui.pushButton_brightness_change.clicked.connect(self.brightness_change)
self.ui.pushButton_hist_equ.clicked.connect(self.hist_equ)
pass
def open_file(self):
file_path, file_type = QFileDialog.getOpenFileName(
QFileDialog(), "选择图片", "", "图像文件(*.jpg *.bmp *.png)"
)
self.cv_srcImage = cv2.imread(file_path)
if self.cv_srcImage is not None:
print(self.cv_srcImage.shape)
height, width = self.cv_srcImage.shape[0], self.cv_srcImage.shape[1]
ui_image = QImage(
cv2.cvtColor(self.cv_srcImage, cv2.COLOR_BGR2RGB),
width,
height,
QImage.Format_RGB888,
)
if width > height:
ui_image = ui_image.scaledToWidth(self.ui.label_image_1.width())
else:
ui_image = ui_image.scaledToHeight(self.ui.label_image_1.height())
self.ui.label_image_1.setPixmap(QPixmap.fromImage(ui_image))
self._show_hist_image(flag=1)
def brightness_change(self):
def _brightness_change(image, p=0):
copyImage = image.copy()
copyImage = np.array(copyImage, dtype=np.uint16)
copyImage = copyImage + p
copyImage = np.clip(copyImage, 0, 255)
copyImage = np.array(copyImage, dtype=np.uint8)
return copyImage
self.cv_equImage = _brightness_change(
image=self.cv_srcImage, p=self.ui.spinBox_brightness_change.value()
)
height, width = self.cv_equImage.shape[0], self.cv_equImage.shape[1]
ui_image = QImage(
cv2.cvtColor(self.cv_equImage, cv2.COLOR_BGR2RGB),
width,
height,
QImage.Format_RGB888,
)
if width > height:
ui_image = ui_image.scaledToWidth(self.ui.label_image_2.width())
else:
ui_image = ui_image.scaledToHeight(self.ui.label_image_2.height())
self.ui.label_image_2.setPixmap(QPixmap.fromImage(ui_image))
self._show_hist_image(flag=2)
def hist_equ(self):
def _his_equ(image):
copyImage = image.copy()
if copyImage.ndim == 3:
ycrcbImage = cv2.cvtColor(copyImage, cv2.COLOR_BGR2YCR_CB)
channels = list(cv2.split(ycrcbImage))
channels[0] = cv2.equalizeHist(src=channels[0])
ycrcbImage = cv2.merge([channels[0], channels[1], channels[2]])
copyImage = cv2.cvtColor(ycrcbImage, cv2.COLOR_YCR_CB2BGR)
return copyImage
elif copyImage.ndim == 2:
copyImage = cv2.equalizeHist(src=copyImage)
return copyImage
self.cv_equImage = _his_equ(image=self.cv_srcImage)
height, width = self.cv_equImage.shape[0], self.cv_equImage.shape[1]
ui_image = QImage(
cv2.cvtColor(self.cv_equImage, cv2.COLOR_BGR2RGB),
width,
height,
QImage.Format_RGB888,
)
if width > height:
ui_image = ui_image.scaledToWidth(self.ui.label_image_2.width())
else:
ui_image = ui_image.scaledToHeight(self.ui.label_image_2.height())
self.ui.label_image_2.setPixmap(QPixmap.fromImage(ui_image))
self._show_hist_image(flag=2)
def _show_hist_image(self, flag=1):
if flag == 1:
histImg = self._calc_gray_hist(image=self.cv_srcImage)
width, height = histImg.shape[0], histImg.shape[1]
ui_image = QImage(
cv2.cvtColor(histImg, cv2.COLOR_BGR2RGB),
width,
height,
QImage.Format_RGB888,
)
self.ui.label_image_3.setPixmap(QPixmap.fromImage(ui_image))
elif flag == 2:
histImg = self._calc_gray_hist(image=self.cv_equImage)
width, height = histImg.shape[0], histImg.shape[1]
ui_image = QImage(
cv2.cvtColor(histImg, cv2.COLOR_BGR2RGB),
width,
height,
QImage.Format_RGB888,
)
self.ui.label_image_4.setPixmap(QPixmap.fromImage(ui_image))
def _calc_gray_hist(self, image):
copyImage = image.copy()
if copyImage.ndim == 3:
copyImage = cv2.cvtColor(copyImage, cv2.COLOR_BGR2GRAY)
histArray = cv2.calcHist([copyImage], [0], None, [256], [0, 255]) # 统计数组
mnVal, maxVal, minLoc, macLoc = cv2.minMaxLoc(histArray) # 找最大值
histImg = np.zeros([256, 256, 3], np.uint8)
hpt = int(0.9 * 256) # 预留顶部空间
for i in range(256):
intensity = int(histArray[i] * hpt / maxVal) # 柱状图高度
cv2.line(histImg, (i, 256), (i, 256 - intensity), [255, 255, 255]) # 画线
return histImg