You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

455 lines
17 KiB

5 months ago
import sys
import numpy as np
import data as gl_data
import tkinter as tk
from tkinter import *
import tkinter.filedialog # 注意次数要将文件对话框导入
import re
import inspect
from X1 import *
from X2 import *
from X3 import *
import function
import input
global Q_root,F_root
global root_window
global label1,label2,label3
def window():
global root_window
global label1, label2, label3
root_window = Tk()
root_window.title('函数拟合')
root_window.geometry('900x600') # 设置窗口大小:宽x高,注,此处不能为 "*",必须使用 "x"
# 设置主窗口的背景颜色,颜色值可以是英文单词或者颜色值的16进制数,除此之外还可以使用Tk内置的颜色常量
root_window["background"] = "white"
root_window.resizable(0, 0) # 防止用户调整尺寸
label1 = tk.Label(root_window, text="样本数据\n集文件", font=('Times', 8), bg="white",
width=13, height=3, # 设置标签内容区大小
padx=0, pady=0, borderwidth=0, )
label1.place(x=10, y=4) # 设置填充区距离、边框宽度和其样式(凹陷式)
label3 = tk.Label(root_window, text="", font=('Times', 8), bg="white", fg="black",
width=39, height=2, padx=0, pady=0, borderwidth=0, relief="ridge", highlightcolor="blue")
label3.place(x=122, y=10)
# 使用按钮控件调用函数
tk.Button(root_window, text="装载", relief=RAISED, command=lambda: askfile(label3)).place(x=370, y=12)
label2 = tk.Label(root_window, text="拟合曲线类型", font=('Times', 12), bg="white",
width=20, height=3, # 设置标签内容区大小
padx=0, pady=0, borderwidth=0, )
# 设置填充区距离、边框宽度和其样式(凹陷式)
label2.place(x=450, y=4)
gl_data.Canvas2 = tk.Canvas(root_window, bg='white', width=450, height=330)
gl_data.Canvas2.place(x=4, y=60)
# 定义一个处理文件的相关函数
def askfile(label3):
# 从本地选择一个文件,并返回文件的路径
filename = tkinter.filedialog.askopenfilename()
if filename != '':#若选中了一个文件,则对文件进行读取
label3.config(text=filename)#显示文件路径
read_sample_data(filename)#将文件读取并存到sampleData中
# print_sample_data(filename)#将文件读取并逐行输出
selfdata_show(gl_data.SampleData, gl_data.LOW, gl_data.HIGH)
else:#若未选择文件,则显示为空
label3.config(text='')
def print_sample_data(file_path):#打开对应文件
with open(file_path, 'r') as file:
for line in file:#逐行读取文件
line = line.strip('\n')#移除换行符
sx, sy = line.split(' ')#以空格分割xy
print(f'sx: {float(sx)}, sy: {float(sy)}')#将sx、sy转换为浮点数并打印
def read_sample_data(file_path):
x, y = [], []#初始化xy
with open(file_path, 'r') as file:
for line in file:#逐行读文件
line = line.strip('\n')#移除换行符
sx, sy = line.split(' ')#以空格分割xy
x.append(float(sx))#将sx转换为浮点数并加入数组
y.append(float(sy))#将sy转换为浮点数并加入数组
gl_data.SampleData = np.array(list(zip(x, y)))#xy数组转为array并赋值给全局变量
# x=np.array(x) # 列表转数组
# y=np.array(y)
# gl_data.SampleData = np.array(list(zip(x, y)))
# #################################拟合优度R^2的计算######################################
def __sst(y_no_fitting):
"""
计算SST(total sum of squares) 总平方和
:param y_no_predicted: List[int] or array[int] 待拟合的y
:return: 总平方和SST
"""
y_mean = sum(y_no_fitting) / len(y_no_fitting)
s_list =[(y - y_mean)**2 for y in y_no_fitting]
sst = sum(s_list)
return sst
def __ssr(y_fitting, y_no_fitting):
"""
计算SSR(regression sum of squares) 回归平方和
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 回归平方和SSR
"""
y_mean = sum(y_no_fitting) / len(y_no_fitting)
s_list =[(y - y_mean)**2 for y in y_fitting]
ssr = sum(s_list)
return ssr
def __sse(y_fitting, y_no_fitting):
"""
计算SSE(error sum of squares) 残差平方和
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 残差平方和SSE
"""
s_list = [(y_fitting[i] - y_no_fitting[i])**2 for i in range(len(y_fitting))]
sse = sum(s_list)
return sse
def goodness_of_fit(y_fitting, y_no_fitting):
"""
计算拟合优度R^2
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 拟合优度R^2
"""
sse = __sse(y_fitting, y_no_fitting)
sst = __sst(y_no_fitting)
rr = 1 - sse /sst
return rr
# 简化版本的goodness_of_fit
def goodness_of_fit_easy(y_fitting, y_no_fitting):
"""
计算拟合优度R^2
:param y_fitting: List[int] or array[int] 拟合好的y值
:param y_no_fitting: List[int] or array[int] 待拟合y值
:return: 拟合优度R^2
"""
y_mean = sum(y_no_fitting) / len(y_no_fitting)
# 计算SST
sst = sum((y - y_mean) ** 2 for y in y_no_fitting)
# 计算SSE
sse = sum((y_fitting[i] - y_no_fitting[i]) ** 2 for i in range(len(y_fitting)))
# 计算R^2
r_squared = 1 - sse / sst
return r_squared
# 由于之前的函数修改了,这里需要对四个按钮的函数进行编程
def BF_generate_plot_dada(low, high):
num_samples = 25 # 设置样本点数量
sampleData = random_points(num_samples, low, high) # 生成随机样本数据25个
generate_and_plot_sample_data(sampleData, low, high)
def BF_plot_data(sampleData,low,high):
selfdata_show(sampleData,low,high)
def BF_plot_data_and_curve(curveData, sampleData,low,high):
# curveData = compute_curveData2(low,high,1,theta,m, x.mean(), x.std())
draw_dots_and_line(curveData,sampleData,low,high)
# # X4版本
def BF_fit_X4(xian_index, sampleData):
# gl_data.yvals_pow = []
print(xian_index)
cur = function.Fun[xian_index] # 装载正在选择的函数
func = cur.get_fun()#获取当前函数func
sx = sampleData[:,0]
sy = sampleData[:,1]
popt, pcov = curve_fit(func, sx, sy)# 用curve_fit来对点进行拟合
yvals_pow = func(sx, *popt)
# 这里直接套用会没有CurveData
x_values = np.arange(gl_data.LOW, gl_data.HIGH, 1)
y_values = func(x_values, *popt)
gl_data.CurveData = np.column_stack((x_values, y_values))
rr = goodness_of_fit(yvals_pow, sy)# 计算本次拟合的R*R值用于表示拟合优度
# 输出拟合后的各个参数值
ans = '\n函数系数F(x) = '
for i in range(cur.variable):
if i == 4:
ans += '\n'
if i != 0:
ans += ', '
ans += chr(ord('a') + i) + '=' + '{:.2e}'.format(popt[i]) # str(round(gl_data.popt[i], 3))
gl_data.Out = '函数形式:' + cur.name + ' '
gl_data.Out += cur.demo
gl_data.Out += ans
gl_data.Out += '\n拟合优度(R\u00b2)' + str(round(rr, 5))
show_fit_X4()# 显示函数信息到输出框
# # X4版本
# 这里是梯度下降法更新后的新的按钮函数
def BF_fit_X4_testnew(xian_index, sampleData):
# # print(xian_index)
#
# cur = function.Fun[xian_index] # 装载正在选择的函数
# func = cur.get_fun()#获取当前函数func
#
# sx = sampleData[:,0]
# sy = sampleData[:,1]
#
# popt, pcov = gradient_descent_method_X5(func, sx, sy)# 用curve_fit来对点进行拟合
#
# x_normalized = (sx - np.mean(sx)) / np.std(sx)
# yvals_pow = func(x_normalized, *popt)
#
# # print("yvals_pow", yvals_pow)
# # print("sy", sy)
#
# # 这里直接套用会没有CurveData
# x_values = np.arange(gl_data.LOW, gl_data.HIGH, 1)
# x_values_normalized = (x_values - np.mean(sx)) / np.std(sx)
# y_values = func(x_values_normalized, *popt)
# gl_data.CurveData = np.column_stack((x_values, y_values))
#
# rr = goodness_of_fit(yvals_pow, sy)# 计算本次拟合的R*R值用于表示拟合优度
# # 输出拟合后的各个参数值
# ans = '\n函数系数F(x) = '
# for i in range(cur.variable):
# if i == 4:
# ans += '\n'
# if i != 0:
# ans += ', '
# ans += chr(ord('a') + i) + '=' + '{:.2e}'.format(popt[i]) # str(round(gl_data.popt[i], 3))
# gl_data.Out = '函数形式:' + cur.name + ' '
# gl_data.Out += cur.demo
# gl_data.Out += ans
# gl_data.Out += '\n拟合优度(R\u00b2)' + str(round(rr, 5))
fit_X4(xian_index, sampleData)
show_fit_X4()# 显示函数信息到输出框
# 编程4.18 -----------------------------------------
def fitting(letters,result):
code_str = '''
def func({}):
return {}
'''.format(letters,result)
print("code_str",code_str)
return code_str
def create_func(code_str):
# 创建一个空的命名空间
namespace = {}
# 使用exec函数执行字符串代码并指定命名空间为locals
exec(code_str, globals(), namespace)
# 返回命名空间中的函数对象
return namespace['func']
# 这里由于拓展的各种函数因此使用的curve_fit
def BF_fit(root_window, screen_size, xian_index, sampleData):
fit_XX(xian_index, sampleData)
show_fit(root_window, screen_size) # 显示函数信息到输出框,包括上述信息
# 这里是因为自己的梯度下降法可以使用了所以整一个新的同时按照X4中的工作将BF_Fit修改为简单的函数调用形式而不是一大片
def BF_fit_X5_new(root_window, screen_size, xian_index, sampleData):
fit_X5(xian_index, sampleData)
show_fit(root_window, screen_size) # 显示函数信息到输出框,包括上述信息
# 编程4.18 END-----------------------------------------
def buttons():
# 随机生成样本点并显示
b_dot = tk.Button(root_window, text="生成\n数据集", relief=RAISED, bd=4, bg="white", font=("微软雅黑", 10),
command=lambda: BF_generate_plot_dada(gl_data.LOW, gl_data.HIGH))
b_dot.place(x=455, y=410)
# 显示当前样本点
b_show = tk.Button(root_window, text="显示\n数据集", relief=RAISED, bd=4, bg="white", font=("微软雅黑", 10),
command=lambda: BF_plot_data(gl_data.SampleData, gl_data.LOW, gl_data.HIGH))
b_show.place(x=510, y=410)
# 显示数据集与曲线
b_line = tk.Button(root_window, text="显示数据\n集与曲线", relief=RAISED, bd=4, bg="white", font=("微软雅黑", 10),
command=lambda: BF_plot_data_and_curve(gl_data.CurveData, gl_data.SampleData, gl_data.LOW, gl_data.HIGH))
b_line.place(x=565, y=410)
# 手动输入数据集
b_input = tk.Button(root_window, text="手动输入数据集", relief=RAISED, bd=4, bg="white", pady=7, font=("微软雅黑", 13),
command=lambda: input.input_num(root_window))
b_input.place(x=633, y=410)
# 拟合并输出拟合结果
b_fit = tk.Button(root_window, text="拟合", relief=RAISED, bd=4, bg="white", pady=7, font=("微软雅黑", 13),
command=lambda: BF_fit_X4_testnew(gl_data.Xian_index, gl_data.SampleData))
b_fit.place(x=771, y=410)
# 这里是X4版本的代码X5修改了界面
def show_fit_X4():
L = tk.Label(root_window, text='结果输出:', bg='white', font=("微软雅黑", 16)
, anchor=W)
L.place(x=20, y=480, width=100, height=30)
ans = tk.Label(root_window, text=gl_data.Out, font=("微软雅黑", 14)
, anchor=W, justify='left')
ans.place(x=120, y=480, width=760, height=100)
print(gl_data.Out)
def show_fit(root_window, screen_size):
sout = str(gl_data.Out)
ans = tk.Label(root_window, text=sout, font=("微软雅黑", 14)
, anchor=W, justify='left')
ans.place(x=int(120*screen_size), y=int(480*screen_size), width=int(760*screen_size), height=100)
print(sout)
# 拟合按钮所对应的函数
def fit_data(xian_index, sampleData):
# gl_data.yvals_pow = []
cur = function.Fun[xian_index] # 装载正在选择的函数
func = cur.get_fun()#获取当前函数func
sx, sy = sampleData[:, 0], sampleData[:, 1]
# 使用 inspect.signature 获取函数的签名信息
sig = inspect.signature(func)
# 获取所有参数的名称
params = sig.parameters
print(params)
popt, pcov = curve_fit(func, sx, sy)# 用curve_fit来对点进行拟合
yvals_pow = func(sx, *popt)
rr = goodness_of_fit(yvals_pow, sy)# 计算本次拟合的R*R值用于表示拟合优度
# 输出拟合后的各个参数值
ans = '\n函数系数:'
for i in range(cur.variable):
if i == 4:
ans += '\n'
if i != 0:
ans += ', '
ans += chr(ord('a') + i) + '=' + '{:.2e}'.format(popt[i]) # str(round(gl_data.popt[i], 3))
gl_data.Out = '函数形式:' + cur.name + ' '
gl_data.Out += cur.demo
gl_data.Out += ans
gl_data.Out += '\n拟合优度(R\u00b2)' + str(round(rr, 5))
show_fit_X4() # 显示函数信息到输出框
def change_Q_X4(no):
gl_data.Quadrant = no #更改全局变量的象限显示
if no:#若为一象限则修改显示下限为0
gl_data.LOW = 0
else:#若为四象限,则修改显示下限为-gl_data.maxV
gl_data.LOW = -gl_data.MAXV
q_button_X4()#更新象限显示面板
def q_button_X4():
r = 7.5
rr = 2.5
for widget in Q_root.winfo_children():
widget.destroy()
q_cv = tk.Canvas(Q_root, width=400, height=50)
q_cv.place(x=0, y=0)
l = tk.Label(Q_root, text='坐标轴', bd=0, font=("微软雅黑", 16)
, anchor=W)
l.place(x=20, y=0, width=80, height=50,)
# 四象限按钮
b1 = tk.Button(Q_root, text='四象限', bd=0, font=("微软雅黑", 16)
, command=lambda: change_Q(0), anchor=W)
b1.place(x=170, y=0, width=80, height=50,)
# 一象限按钮
b2 = tk.Button(Q_root, text='一象限', bd=0, font=("微软雅黑", 16)
, command=lambda: change_Q(1), anchor=W)
b2.place(x=320, y=0, width=80, height=50,)
# 绘制标记框
q_cv.create_oval(140 - r, 25 - r, 140 + r, 25 + r
, fill="white", width=1, outline="black")
q_cv.create_oval(290 - r, 25 - r, 290 + r, 25 + r
, fill="white", width=1, outline="black")
# 根据当前的象限选择值来填充标记框
if gl_data.Quadrant == 0:
q_cv.create_oval(140 - rr, 25 - rr, 140 + rr, 25 + rr
, fill="black", width=1, outline="black")
else:
q_cv.create_oval(290 - rr, 25 - rr, 290 + rr, 25 + rr
, fill="black", width=1, outline="black")
def change_f_X4(no):
gl_data.Xian_index = no#设置全局函数编号为该函数
f_button_X4()#重新绘制函数显示界面
def f_button_X4():
r = 7.5#设置按钮大小
rr = 2.5#设置按钮大小
for widget in F_root.winfo_children():
widget.destroy()#清空原有按钮
f_cv = tk.Canvas(F_root, width=400, height=330)#新建画布
f_cv.place(x=0, y=0)#放置画布
f_cv.create_rectangle(2, 2, 398, 328, fill='white', outline="#0099ff")#设置画布边框及底色
cur = 0#函数计数
for fun in function.Fit_type_library:#遍历函数库
f = function.Fit_type_library.get(fun)#获取函数具体信息
if function.Show[f[0]] == 1:# 如果show为1则显示
f_cv.create_oval(20 - r, 20 + 15 + cur * 30 - r, 20 + r, 20 + 15 + cur * 30 + r
, fill="white", width=1, outline="black")# 绘制标记框
if f[0] == gl_data.Xian_index:# 若选择为当前函数则标记
f_cv.create_oval(20 - rr, 20 + 15 + cur * 30 - rr, 20 + rr, 20 + 15 + cur * 30 + rr
, fill="black", width=1, outline="black")
# 绘制切换按钮,单击则将当前使用函数切换为该函数
button = tk.Button(F_root, text=f[2] + ' ' + f[1], bd=0, bg="white", font=("微软雅黑", 12)
, command=lambda x=f[0]: change_f_X4(x), anchor=W)
button.place(x=40, y=20 + cur * 30, width=300, height=30)
cur += 1#计数加一
def close_window():
sys.exit()
def main():
global Q_root, F_root, root_window
gl_data.X = []
gl_data.X = []
window()
function.f_read()
# 函数选择相关界面
F_root = tk.Frame(root_window, width=400, height=330, bg='white', )
F_root.place(x=490, y=60)
# 象限选择相关界面
Q_root = tk.Frame(root_window, width=400, height=50, bg='white', )
Q_root.place(x=20, y=410)
buttons()
f_button_X4()
q_button_X4()
show_fit_X4()
root_window.protocol("WM_DELETE_WINDOW", close_window)
root_window.mainloop()
if __name__ == '__main__':
main()
# X4除了没有使用自己定义的方法以外基本差不多了