import data as gl_data import numpy as np import matplotlib.pyplot as plt def gradient_descent_poly_fit(x, y, degree, learning_rate, iterations): # 初始化参数(多项式系数)为0 theta = np.zeros(degree + 1) m = len(x) # 样本数量 # 归一化x以改善数值稳定性 x_normalized = (x - x.mean()) / x.std() # 迭代梯度下降 for _ in range(iterations): # 通过当前参数计算多项式的值 y_pred = np.polyval(theta[::-1], x_normalized) # 计算预测值与真实值之间的误差 error = y_pred - y # 对每个参数计算梯度 for i in range(degree + 1): # 计算损失函数对参数的偏导数(梯度) gradient = np.dot(error, x_normalized**i) * 2 / m # 梯度下降更新参数 theta[i] -= learning_rate * gradient return theta, x_normalized # 设置一个较小的学习率和较多的迭代次数 learning_rate = 0.001 iterations = 50000 # x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) x = np.array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) y = np.array([1, 2, 1, 5, 8, 13, 21, 34, 55, 89]) degree = 2 # 运行梯度下降算法 theta, x_normalized = gradient_descent_poly_fit(x, y, degree, learning_rate, iterations) # 用拟合的参数计算多项式的值 x_fit_normalized = np.linspace(x_normalized.min(), x_normalized.max(), 100) y_fit = np.polyval(theta[::-1], x_fit_normalized) # 反归一化x_fit x_fit = x_fit_normalized * x.std() + x.mean() # 绘制原始数据点和拟合的多项式 plt.scatter(x, y, color='red', label='Sample Data') plt.plot(x_fit, y_fit, label='Polynomial Fit') plt.legend() plt.show() # 输出拟合参数 print(theta)