|
|
import random
|
|
|
from PIL import Image, ImageTk
|
|
|
import math
|
|
|
import random
|
|
|
import time
|
|
|
from tkinter import W
|
|
|
|
|
|
Chessimgx = 0 # 玩家落子的横坐标
|
|
|
Chessimgy = 0 # 玩家落子的纵坐标
|
|
|
xregretFLAG = [0 for x in range(365)] # 悔棋的数组x坐标
|
|
|
yregretFLAG = [0 for y in range(365)] # 悔棋的数组y坐标
|
|
|
|
|
|
|
|
|
class Chess:
|
|
|
def __init__(self):
|
|
|
self.chessData = [[{"Cstate": 0, "Cstep": 0} for j in range(19)] for i in
|
|
|
range(19)] # Cstate=0无棋子,1有黑棋子,2有白棋子;Cstep为该棋子落子的步骤
|
|
|
self.currentStep = 0 # 棋子当前进行的步数
|
|
|
self.Chessimg = [[0 for y in range(19)] for x in range(19)]
|
|
|
self.Reviewflag = 0 # 复盘的标签flag 0为没有复盘 1为已经复盘,防止重复复盘导致无法消除新建的标签
|
|
|
self.Reviewlabel = [[0 for y in range(19)] for x in range(19)] # 复盘的数字标签
|
|
|
self.score = [[0 for y in range(19)] for x in range(19)] # 初始化计分数组
|
|
|
self.maxScore = 0 # 落子分数
|
|
|
self.counts = 0
|
|
|
self.newCount = 0
|
|
|
self.OvaloneNew = [] # 棋子对象列表
|
|
|
self.winFlag = 0 # 判断是否取得胜利
|
|
|
self.Gameover = 0 # 判断游戏是否结束,1 黑方胜,2 白方胜利,3 平局
|
|
|
self.depth = 0 # 搜索的深度
|
|
|
self.player = 0 # 轮到下棋的标志,1=下,0=不下
|
|
|
self.player2 = 0 # 玩家2
|
|
|
self.currentPlayer = 1 # (=1,黑方;=2,白方)
|
|
|
self.myColor = 0 # 玩家选择的棋子颜色
|
|
|
self.chessMode = 3 # 对弈方式标志 chessMode(=0,人-人对弈; =1, 人-机白对弈; =2,机黑-人对弈, =4,测试模式)
|
|
|
self.player2Color = 0 # 玩家2的棋子颜色
|
|
|
self.maxScorePos = ()
|
|
|
|
|
|
# 结果展示的图片,以用于删除
|
|
|
self.PicLocIds = []
|
|
|
|
|
|
def gameEnd(self):
|
|
|
if self.Gameover == 1 or self.winFlag == 1:
|
|
|
return True
|
|
|
else:
|
|
|
return False
|
|
|
|
|
|
# 计算某个位置得分
|
|
|
def countScore(self, x, y, computerColor):
|
|
|
# global sum,count,value
|
|
|
global s
|
|
|
sum = 0
|
|
|
# count = 0
|
|
|
value = [0, 0, 0, 0]
|
|
|
upcount = [0, 0, 0, 0] # 左、上、左斜上、左斜下 棋子数
|
|
|
downcount = [0, 0, 0, 0] # 右、下、右斜向下、右斜向上 棋子数
|
|
|
upflag = [0, 0, 0, 0] # 左、上、左斜上、左斜下 空格数
|
|
|
downflag = [0, 0, 0, 0] # 右、下、右斜向下、右斜向上 空格数
|
|
|
message = ''# 存储得分信息的字符串
|
|
|
for color in range(1, 3):
|
|
|
# 假设当前位置为当前遍历的棋子颜色
|
|
|
self.chessData[x][y]['Cstate'] = color
|
|
|
for i in range(x - 1, -1, -1): # 计算左边棋子数量 upcount[0]表示左侧同类棋子 用upflag[0] 记录
|
|
|
if self.chessData[i][y]['Cstate'] == color:
|
|
|
upcount[0] += 1 # 左侧有自己棋子
|
|
|
elif self.chessData[i][y]['Cstate'] != 0 and self.chessData[i][y]['Cstate'] != color: # 左侧有对方棋子
|
|
|
upflag[0] = -1
|
|
|
break
|
|
|
elif self.chessData[i][y]['Cstate'] == 0: # 左侧没有棋子
|
|
|
upflag[0] = 1
|
|
|
if i - 1 >= 0 and self.chessData[i - 1][y]['Cstate'] == 0:
|
|
|
upflag[0] = 2 # 表示有两个空格
|
|
|
else:
|
|
|
break
|
|
|
if i - 2 >= 0 and self.chessData[i - 2][y]['Cstate'] == 0:
|
|
|
upflag[0] = 3 # 表示有三个空格
|
|
|
else:
|
|
|
break
|
|
|
break
|
|
|
for i in range(x + 1, 19): # 计算右边棋子数量 downcount[0]表示右侧同类棋子 用downflag[0] 记录
|
|
|
if self.chessData[i][y]['Cstate'] == color:
|
|
|
downcount[0] += 1 # 右侧有自己棋子
|
|
|
elif self.chessData[i][y]['Cstate'] != 0 and self.chessData[i][y]['Cstate'] != color: # 右侧有对方棋子
|
|
|
downflag[0] = -1
|
|
|
break
|
|
|
elif self.chessData[i][y]['Cstate'] == 0: # 右侧没有棋子
|
|
|
downflag[0] = 1
|
|
|
if i + 1 < 19 and self.chessData[i + 1][y]['Cstate'] == 0:
|
|
|
downflag[0] = 2 # 表示有两个空格
|
|
|
else:
|
|
|
break
|
|
|
if i + 2 < 19 and self.chessData[i + 2][y]['Cstate'] == 0:
|
|
|
downflag[0] = 3 # 表示有三个空格
|
|
|
else:
|
|
|
break
|
|
|
break
|
|
|
for i in range(y - 1, -1, -1): # 计算方向向上 upcount[1]表示上方同类棋子 用upflag[1] 记录
|
|
|
if self.chessData[x][i]['Cstate'] == color:
|
|
|
upcount[1] += 1 # 上有自己棋子
|
|
|
elif self.chessData[x][i]['Cstate'] != 0 and self.chessData[x][i]['Cstate'] != color: # 上有对方棋子
|
|
|
upflag[1] = -1
|
|
|
break
|
|
|
elif self.chessData[x][i]['Cstate'] == 0: # 上没有棋子
|
|
|
upflag[1] = 1
|
|
|
if i - 1 >= 0 and self.chessData[x][i - 1]['Cstate'] == 0:
|
|
|
upflag[1] = 2 # 表示上有两个空格
|
|
|
else:
|
|
|
break
|
|
|
if i - 2 >= 0 and self.chessData[x][i - 2]['Cstate'] == 0:
|
|
|
upflag[1] = 3 # 表示上有三个空格
|
|
|
else:
|
|
|
break
|
|
|
break
|
|
|
for i in range(y + 1, 19): # 计算下棋子数量 downcount[0]表示下同类棋子 用downflag[0] 记录
|
|
|
if self.chessData[x][i]['Cstate'] == color:
|
|
|
downcount[1] += 1 # 下有自己棋子
|
|
|
elif self.chessData[x][i]['Cstate'] != 0 and self.chessData[x][i]['Cstate'] != color: # 下有对方棋子
|
|
|
downflag[1] = -1
|
|
|
break
|
|
|
elif self.chessData[x][i]['Cstate'] == 0: # 下侧没有棋子
|
|
|
downflag[1] = 1
|
|
|
if i + 1 < 19 and self.chessData[x][i + 1]['Cstate'] == 0:
|
|
|
downflag[1] = 2 # 表示下有两个空格
|
|
|
else:
|
|
|
break
|
|
|
if i + 2 < 19 and self.chessData[x][i + 2]['Cstate'] == 0:
|
|
|
downflag[1] = 3 # 表示下有三个空格
|
|
|
else:
|
|
|
break
|
|
|
break
|
|
|
j = 1
|
|
|
for i in range(x - 1, -1, -1): # // 计算左斜向上 upcount[2]表示左斜向上同类棋子 用upflag[2]记录
|
|
|
# for j in range(y - 1, -1, -1):
|
|
|
if y - j >= 0 and self.chessData[i][y - j]['Cstate'] == color:
|
|
|
upcount[2] += 1 # 左斜向上有自己棋子
|
|
|
j += 1
|
|
|
elif y - j >= 0 and self.chessData[i][y - j]['Cstate'] != 0 and self.chessData[i][y - j][
|
|
|
'Cstate'] != color: # 左斜向上有对方棋子
|
|
|
upflag[2] = -1
|
|
|
j += 1
|
|
|
break
|
|
|
elif y - j >= 0 and self.chessData[i][y - j]['Cstate'] == 0: # 左斜向上没有棋子
|
|
|
upflag[2] = 1
|
|
|
if i - 1 >= 0 and y - j - 1 >= 0 and self.chessData[i - 1][y - j - 1]['Cstate'] == 0:
|
|
|
upflag[2] = 2 # 表示有两个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
if i - 2 >= 0 and y - j - 2 >= 0 and self.chessData[i - 2][y - j - 2]['Cstate'] == 0:
|
|
|
upflag[2] = 3 # 表示有三个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
j += 1
|
|
|
break
|
|
|
j = 1
|
|
|
for i in range(x + 1, 19): # // 计算右斜向下 downcount[2]表示右斜向下同类棋子 用downflag[2]记录
|
|
|
if y + j < 19 and self.chessData[i][y + j]['Cstate'] == color:
|
|
|
downcount[2] += 1 # 右斜向下有自己棋子
|
|
|
j += 1
|
|
|
elif y + j < 19 and self.chessData[i][y + j]['Cstate'] != 0 and self.chessData[i][y + j][
|
|
|
'Cstate'] != color: # 右斜向下有对方棋子
|
|
|
downflag[2] = -1
|
|
|
j += 1
|
|
|
break
|
|
|
elif y + j < 19 and self.chessData[i][y + j]['Cstate'] == 0: # 右斜向下没有棋子
|
|
|
downflag[2] = 1
|
|
|
if i + 1 < 19 and y + j + 1 < 19 and self.chessData[i + 1][y + j + 1]['Cstate'] == 0:
|
|
|
downflag[2] = 2 # 表示有两个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
if i + 2 < 19 and y + j + 2 < 19 and self.chessData[i + 2][y + j + 2]['Cstate'] == 0:
|
|
|
downflag[2] = 3 # 表示有三个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
j += 1
|
|
|
break
|
|
|
j = 1
|
|
|
for i in range(x + 1, 19): # // 计算右斜向上 downcount[3]表示右斜向上同类棋子 用downflag[3]记录
|
|
|
# for j in range(y - 1, -1, -1):
|
|
|
if y - j >= 0 and self.chessData[i][y - j]['Cstate'] == color:
|
|
|
downcount[3] += 1 # 右斜向上有自己棋子
|
|
|
j += 1
|
|
|
elif y - j >= 0 and self.chessData[i][y - j]['Cstate'] != 0 and self.chessData[i][y - j][
|
|
|
'Cstate'] != color: # 右斜向上有对方棋子
|
|
|
downflag[3] = -1
|
|
|
j += 1
|
|
|
break
|
|
|
elif y - j >= 0 and self.chessData[i][y - j]['Cstate'] == 0: # 右斜向上没有棋子
|
|
|
downflag[3] = 1
|
|
|
if i + 1 < 19 and y - j - 1 >= 0 and self.chessData[i][y - j]['Cstate'] == 0:
|
|
|
downflag[3] = 2 # 表示有两个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
if i + 2 < 19 and y - j - 2 >= 0 and self.chessData[i][y - j]['Cstate'] == 0:
|
|
|
downflag[3] = 3 # 表示有三个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
j += 1
|
|
|
break
|
|
|
j = 1
|
|
|
for i in range(x - 1, -1, -1): # 计算左斜向下 upcount[3]表示左斜向下同类棋子 用upflag[3]记录
|
|
|
# for j in range(y + 1, 15):
|
|
|
if y + j < 19 and self.chessData[i][j + y]['Cstate'] == color:
|
|
|
upcount[3] += 1 # 左斜向下有自己棋子
|
|
|
j += 1
|
|
|
elif y + j < 19 and self.chessData[i][j + y]['Cstate'] != 0 and self.chessData[i][j + y][
|
|
|
'Cstate'] != color: # 左斜向下有对方棋子
|
|
|
upflag[3] = -1
|
|
|
j += 1
|
|
|
break
|
|
|
elif y + j < 19 and self.chessData[i][j + y]['Cstate'] == 0: # 左斜向下没有棋子
|
|
|
upflag[3] = 1
|
|
|
if i - 1 >= 0 and j + y + 1 < 19 and self.chessData[i][j + y]['Cstate'] == 0:
|
|
|
upflag[3] = 2 # 表示有两个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
if i - 2 >= 0 and j + y + 2 < 19 and self.chessData[i - 1][j + y + 1]['Cstate'] == 0:
|
|
|
upflag[3] = 3 # 表示有三个空格
|
|
|
j += 1
|
|
|
else:
|
|
|
j += 1
|
|
|
break
|
|
|
j += 1
|
|
|
break
|
|
|
# 根据上述统计的同色棋子数量和两端的空位情况,对当前假设的棋子颜色进行得分计算
|
|
|
# 如果是电脑方的棋子
|
|
|
if computerColor == self.chessData[x][y]['Cstate']: # 详细的得分规则计算,包括成五、活四、死四、活三等情况
|
|
|
for i in range(4):
|
|
|
count = upcount[i] + downcount[i] + 1
|
|
|
if count == 5: # 成五
|
|
|
message += '五子连珠,得分加4000!\n'
|
|
|
value[i] = 4000
|
|
|
elif count == 4:
|
|
|
if upflag[i] >= 1 and downflag[i] >= 1: # 活四
|
|
|
message += '四子连珠且有两端未被对方封堵,得分加1900!\n'
|
|
|
value[i] = 1900
|
|
|
if (upflag[i] >= 1 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] >= 1): # 眠四
|
|
|
message += '四子连珠且有一端未被对方封堵,得分加300!\n'
|
|
|
value[i] = 300
|
|
|
if upflag[i] == -1 and downflag[i] == -1: # 死四
|
|
|
message += '四子连珠但两端都被封堵,得分减5!\n'
|
|
|
value[i] = -5
|
|
|
# 其他3子2子情况类似
|
|
|
elif count == 3:
|
|
|
if (upflag[i] >= 2 and downflag[i] >= 1) or (upflag[i] >= 1 and downflag[i] >= 2): # 活三
|
|
|
message += '三子连珠且有两端未被对方封堵,得分加400!\n'
|
|
|
value[i] = 400
|
|
|
if (upflag[i] >= 2 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] >= 2) or (
|
|
|
upflag[i] == 1 and downflag[i] == 1): # 眠三
|
|
|
message += '三子连珠且有有一端未被对方封堵,得分加80!\n'
|
|
|
value[i] = 80
|
|
|
if upflag[i] == -1 and downflag[i] == -1: # 死三
|
|
|
message += '三子连珠但两端都被封堵,得分减5!\n'
|
|
|
value[i] = -5
|
|
|
elif count == 2:
|
|
|
if (upflag[i] >= 3 and downflag[i] >= 1) or (upflag[i] >= 1 and downflag[i] >= 3) or (
|
|
|
upflag[i] >= 2 and downflag[i] >= 2): # 活二
|
|
|
message += '二子连珠且有两端未被对方封堵,得分加105!\n'
|
|
|
value[i] = 105
|
|
|
if (upflag[i] >= 3 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] >= 3) or (
|
|
|
upflag[i] == 2 and downflag[i] == 1) or (upflag[i] == 1 and downflag[i] == 2): # 眠三
|
|
|
message += '二子连珠且有有一端未被对方封堵,得分加35!\n'
|
|
|
value[i] = 35
|
|
|
if upflag[i] == -1 and downflag[i] == -1: # 死二
|
|
|
message += '二子连珠但两端都被封堵,得分减5!\n'
|
|
|
value[i] = -5
|
|
|
else:
|
|
|
if (upflag[i] >= 3 and downflag[i] >= 2) or (upflag[i] >= 2 and downflag[i] >= 3): # 活一
|
|
|
value[i] = 8
|
|
|
if (upflag[i] == 2 and downflag[i] == 2) or (upflag[i] == 1 and downflag[i] == 3) or (
|
|
|
upflag[i] == 3 and downflag[i] == 1): # 眠一
|
|
|
value[i] = 2
|
|
|
if (upflag[i] <= 1 and downflag[i] <= 2) or (upflag[i] <= 2 and downflag[i] <= 1): # 死一
|
|
|
value[i] = -5
|
|
|
else:# 如果是玩家方的棋子
|
|
|
# 同上,但得分标准可能有所不同
|
|
|
for i in range(4):
|
|
|
count = upcount[i] + downcount[i] + 1
|
|
|
if count == 5: # 成五
|
|
|
value[i] = 3000
|
|
|
elif count == 4:
|
|
|
if upflag[i] >= 1 and downflag[i] >= 1: # 活四
|
|
|
value[i] = 1500
|
|
|
if (upflag[i] >= 1 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] >= 1): # 眠四
|
|
|
value[i] = 250
|
|
|
if upflag[i] == -1 and downflag[i] == -1: # 死四
|
|
|
value[i] = -5
|
|
|
elif count == 3:
|
|
|
if (upflag[i] >= 2 and downflag[i] >= 1) or (upflag[i] >= 1 and downflag[i] >= 2): # 活三
|
|
|
value[i] = 300
|
|
|
if (upflag[i] >= 2 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] >= 2) or (
|
|
|
upflag[i] == 1 and downflag[i] == 1): # 眠三
|
|
|
value[i] = 50
|
|
|
if upflag[i] == -1 and downflag[i] == -1: # 死三
|
|
|
value[i] = -5
|
|
|
elif count == 2:
|
|
|
if (upflag[i] >= 3 and downflag[i] >= 1) or (upflag[i] >= 1 and downflag[i] >= 3) or (
|
|
|
upflag[i] >= 2 and downflag[i] >= 2): # 活二
|
|
|
value[i] = 65
|
|
|
if (upflag[i] >= 3 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] >= 3) or (
|
|
|
upflag[i] == 2 and downflag[i] == 1) or (upflag[i] == 1 and downflag[i] == 2): # 眠二
|
|
|
value[i] = 15
|
|
|
if (upflag[i] == -1 and downflag[i] == -1) or (upflag[i] == 1 and downflag[i] == 1) or (
|
|
|
upflag[i] == -1 and downflag[i] == 2) or (upflag[i] == 2 and downflag[i] == -1): # 死二
|
|
|
value[i] = -5
|
|
|
else:
|
|
|
if (upflag[i] >= 3 and downflag[i] >= 2) or (upflag[i] >= 2 and downflag[i] >= 3): # 活一
|
|
|
value[i] = 5
|
|
|
if (upflag[i] == 2 and downflag[i] == 2) or (upflag[i] == 1 and downflag[i] == 3) or (
|
|
|
upflag[i] == 3 and downflag[i] == 1): # 眠一
|
|
|
value[i] = 1
|
|
|
if (upflag[i] <= 1 and downflag[i] <= 2) or (upflag[i] <= 2 and downflag[i] <= 1) or (
|
|
|
upflag[i] <= 3 and downflag[i] == -1) or (upflag[i] == -1 and downflag[i] <= 3): # 死三
|
|
|
value[i] = -5
|
|
|
# 汇总得分,并重置变量以便下一轮计算
|
|
|
for i in range(4):
|
|
|
sum += value[i]
|
|
|
value[i] = 0
|
|
|
upcount[i] = 0
|
|
|
downcount[i] = 0
|
|
|
upflag[i] = 0
|
|
|
downflag[i] = 0
|
|
|
# 恢复棋盘状态并返回得分及得分信息
|
|
|
self.chessData[x][y]['Cstate'] = 0
|
|
|
return sum, message
|
|
|
|
|
|
# 根据估值函数计算最佳落子点
|
|
|
def returnChess(self, Depth, computercolor):
|
|
|
time.sleep(0.5)
|
|
|
self.newCount = 0
|
|
|
self.maxScore = 0
|
|
|
self.counts = 0
|
|
|
pos = [[0 for y in range(2)] for x in range(10)]
|
|
|
evaFLAG = 0
|
|
|
position = [0, 0] # 初始化位置坐标数组
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if 0 <= i < 19 and 0 <= j < 19:
|
|
|
if self.chessData[i][j]['Cstate'] == 0:
|
|
|
self.score[i][j], s = self.countScore(i, j, computercolor)
|
|
|
self.newCount += 1
|
|
|
if self.score[i][j] > 0:
|
|
|
self.counts += 1
|
|
|
if self.maxScore < self.score[i][j]:
|
|
|
self.maxScore = self.score[i][j] # 记录当前棋盘分数的最大值
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if self.chessData[i][j]['Cstate'] != 0:
|
|
|
self.score[i][j] = self.chessData[i][j]['Cstate']
|
|
|
if i < 19 and j < 19 and self.score[i][j] == self.maxScore and self.chessData[i][j]['Cstate'] == 0:
|
|
|
pos[evaFLAG][0] = i
|
|
|
pos[evaFLAG][1] = j
|
|
|
evaFLAG += 1
|
|
|
m = random.randint(0, evaFLAG - 1)
|
|
|
position[0] = pos[m][0]
|
|
|
position[1] = pos[m][1]
|
|
|
return position
|
|
|
|
|
|
# 落子建议下一步,
|
|
|
def returnChessNew(self, Depth, computercolor):
|
|
|
time.sleep(0.5)
|
|
|
self.newCount = 0
|
|
|
self.maxScore = 0
|
|
|
self.counts = 0
|
|
|
pos = [[0 for y in range(2)] for x in range(10)]
|
|
|
evaFLAG = 0
|
|
|
position = [0, 0] # 初始化位置坐标数组
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if 0 <= i < 19 and 0 <= j < 19:
|
|
|
if self.chessData[i][j]['Cstate'] == 0:
|
|
|
self.score[i][j] = self.countScore(i, j, computercolor)
|
|
|
self.newCount += 1
|
|
|
if self.score[i][j] > 0:
|
|
|
self.counts += 1
|
|
|
if self.maxScore < self.score[i][j]:
|
|
|
self.maxScore = self.score[i][j] # 记录当前棋盘分数的最大值
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if self.chessData[i][j]['Cstate'] != 0:
|
|
|
self.score[i][j] = self.chessData[i][j]['Cstate']
|
|
|
if i < 19 and j < 19 and self.score[i][j] >= self.maxScore - 5000 and self.chessData[i][j][
|
|
|
'Cstate'] == 0:
|
|
|
pos[evaFLAG][0] = i
|
|
|
pos[evaFLAG][1] = j
|
|
|
evaFLAG += 1
|
|
|
m = random.randint(0, evaFLAG - 1)
|
|
|
position[0] = pos[m][0]
|
|
|
position[1] = pos[m][1]
|
|
|
return position
|
|
|
|
|
|
# 判断玩家点击的位置是否可以落子,如果可以落子,则进行self.make_move()移动,返回self.make_move()的值,否则返回False
|
|
|
def playerLocation(self, playerx, playery, canvas, blackch, whitech):
|
|
|
if 0 <= playerx <= 706 and 0 <= playery <= 640:
|
|
|
m = (playerx - 40) / 37
|
|
|
n = (playery - 21) / 34
|
|
|
intm = int(m)
|
|
|
intn = int(n)
|
|
|
if m - intm >= 0.5 or m - intm <= -0.5:
|
|
|
pointi = intm + 1
|
|
|
else:
|
|
|
pointi = intm
|
|
|
if n - intn >= 0.5 or n - intn <= -0.5:
|
|
|
pointj = intn + 1
|
|
|
else:
|
|
|
pointj = intn
|
|
|
# print(pointi, pointj)
|
|
|
if 0 <= pointi <= 18 and 0 <= pointj <= 18:
|
|
|
# print("1:%d" % self.currentStep)
|
|
|
print("准备makeMove")
|
|
|
return self.makeMove(pointi, pointj, canvas, blackch, whitech)
|
|
|
# print("2:%d" % self.currentStep)
|
|
|
return False
|
|
|
|
|
|
def getPlayerMoveLocation_xy(self, playerx, playery, canvas, blackch, whitech):
|
|
|
if 0 <= playerx <= 706 and 0 <= playery <= 640:
|
|
|
m = (playerx - 40) / 37
|
|
|
n = (playery - 21) / 34
|
|
|
intm = int(m)
|
|
|
intn = int(n)
|
|
|
if m - intm >= 0.5 or m - intm <= -0.5:
|
|
|
pointi = intm + 1
|
|
|
else:
|
|
|
pointi = intm
|
|
|
if n - intn >= 0.5 or n - intn <= -0.5:
|
|
|
pointj = intn + 1
|
|
|
else:
|
|
|
pointj = intn
|
|
|
# print(pointi, pointj)
|
|
|
if 0 <= pointi <= 18 and 0 <= pointj <= 18:
|
|
|
# print("1:%d" % self.currentStep)
|
|
|
return self.makeMove(pointi, pointj, canvas, blackch, whitech), pointi, pointj
|
|
|
# print("2:%d" % self.currentStep)
|
|
|
return self.makeMove(pointi, pointj, canvas, blackch, whitech), pointi, pointj
|
|
|
|
|
|
# # 在pointi, pointj位置进行落子,返回落子是否成功的标记
|
|
|
# def makeMove(self, pointi, pointj, canvas, blackch, whitech):
|
|
|
#
|
|
|
# print("self.chessData[pointi][pointj]['Cstate']", self.chessData[pointi][pointj]['Cstate'])
|
|
|
# print("self.myColor",self.myColor)
|
|
|
# print("self.currentStep % 2",self.currentStep % 2)
|
|
|
# print("self.player2Color",self.player2Color)
|
|
|
#
|
|
|
# # 如果pointi, pointj位置没有棋子,且当前执白子
|
|
|
# if self.chessData[pointi][pointj]['Cstate'] == 0 and self.myColor == 2 and self.currentStep % 2 == 0:
|
|
|
# # 计算得到需要落子画图位置,并画棋子
|
|
|
# Chessimgx = pointi*36.8 + 41
|
|
|
# Chessimgy = pointj*34.3 + 20
|
|
|
# oval = canvas.create_image(Chessimgx - 14, Chessimgy, image=blackch, anchor=W)
|
|
|
# self.Chessimg[pointi][pointj] = oval
|
|
|
# self.chessData[pointi][pointj]['Cstate'] = 2
|
|
|
# xregretFLAG[self.currentStep] = pointi
|
|
|
# yregretFLAG[self.currentStep] = pointj
|
|
|
# self.player = 0 # 玩家下棋标志置0
|
|
|
# self.player2 = 1 # 玩家2下棋标志置1
|
|
|
# self.currentStep += 1
|
|
|
# self.chessData[pointi][pointj]['Cstep'] = self.currentStep
|
|
|
# a = max(abs(pointi - 9), abs(pointj - 9))
|
|
|
# self.depth = max(self.depth, a)
|
|
|
# print("makeMove True")
|
|
|
# return True
|
|
|
# # 如果pointi, pointj位置没有棋子,且当前执黑子
|
|
|
# elif (self.chessData[pointi][pointj]['Cstate'] == 0 and self.myColor == 1 and self.currentStep % 2 != 0) or \
|
|
|
# (self.chessData[pointi][pointj]['Cstate'] == 0 and self.player2Color == 1 and self.currentStep % 2 != 0):
|
|
|
# # 计算得到需要落子画图位置,并画棋子
|
|
|
# Chessimgx = pointi*36.8 + 41
|
|
|
# Chessimgy = pointj*34.6 + 20
|
|
|
# oval = canvas.create_image(Chessimgx - 14, Chessimgy, image=whitech, anchor=W)
|
|
|
# self.Chessimg[pointi][pointj] = oval
|
|
|
# self.chessData[pointi][pointj]['Cstate'] = 1
|
|
|
# xregretFLAG[self.currentStep] = pointi
|
|
|
# yregretFLAG[self.currentStep] = pointj
|
|
|
# self.currentStep += 1
|
|
|
# self.player = 0
|
|
|
# self.player2 = 1 # 玩家2下棋标志置1
|
|
|
# # self.computer = 1
|
|
|
# self.chessData[pointi][pointj]['Cstep'] = self.currentStep
|
|
|
# a = max(abs(pointi - 9), abs(pointj - 9))
|
|
|
# self.depth = max(self.depth, a)
|
|
|
# print("makeMove True")
|
|
|
# return True
|
|
|
# # 如果pointi, pointj位置有棋子,无法落子
|
|
|
# elif self.chessData[pointi][pointj]['Cstate'] != 0:
|
|
|
# print("makeMove False")
|
|
|
# return False
|
|
|
|
|
|
# 在pointi, pointj位置进行落子,返回落子是否成功的标记
|
|
|
def makeMove(self, pointi, pointj, canvas, blackch, whitech):
|
|
|
print("self.chessData[pointi][pointj]['Cstate']", self.chessData[pointi][pointj]['Cstate'])
|
|
|
print("self.myColor", self.myColor)
|
|
|
print("self.currentStep % 2", self.currentStep % 2)
|
|
|
print("self.player2Color", self.player2Color)
|
|
|
|
|
|
# 检查是否可以在pointi, pointj位置落子
|
|
|
if self.chessData[pointi][pointj]['Cstate'] != 0:
|
|
|
print("makeMove False")
|
|
|
return False
|
|
|
|
|
|
# 检查是否轮到当前玩家落子
|
|
|
is_player_turn = (self.myColor == 2 and self.currentStep % 2 == 0) or \
|
|
|
(self.myColor == 1 and self.currentStep % 2 != 0)
|
|
|
is_player2_turn = (self.player2Color == 1 and self.currentStep % 2 != 0)
|
|
|
|
|
|
# 如果不是当前玩家的轮次,则不能落子,函数返回False
|
|
|
if not is_player_turn and not is_player2_turn:
|
|
|
print("makeMove False")
|
|
|
return False
|
|
|
|
|
|
# 根据当前执棋方选择棋子图
|
|
|
image = blackch if self.currentStep % 2 == 0 else whitech
|
|
|
# 计算得到需要落子画图位置,并画棋子
|
|
|
Chessimgx = pointi * 36.8 + 41
|
|
|
Chessimgy = pointj * 34.3 + 20
|
|
|
# Chessimgy = pointj * 34.3 + 20 if self.myColor == 2 else pointj * 34.6 + 20
|
|
|
oval = canvas.create_image(Chessimgx - 14, Chessimgy, image=image, anchor=W)
|
|
|
# 更新棋盘数据,记录棋子信息
|
|
|
self.Chessimg[pointi][pointj] = oval
|
|
|
self.chessData[pointi][pointj]['Cstate'] = self.myColor
|
|
|
xregretFLAG[self.currentStep] = pointi
|
|
|
yregretFLAG[self.currentStep] = pointj
|
|
|
self.currentStep += 1
|
|
|
self.player = 0
|
|
|
self.player2 = 1
|
|
|
self.chessData[pointi][pointj]['Cstep'] = self.currentStep
|
|
|
a = max(abs(pointi - 9), abs(pointj - 9))# 计算落子距离棋盘中心的距离
|
|
|
self.depth = max(self.depth, a) # 更新搜索深度,用于AI决策等场景
|
|
|
print("makeMove True")
|
|
|
return True
|
|
|
|
|
|
def getDirectionScore(self, y, x, y_offset, x_offset):
|
|
|
nowcount = 0 # 落子处我方连续子数
|
|
|
_nowcount = 0 # 落子处对方连续子数
|
|
|
space = None # 我方连续子中有无空格
|
|
|
_space = None # 对方连续子中有无空格
|
|
|
both = 0 # 我方连续子两端有无阻挡
|
|
|
_both = 0 # 对方连续子两端有无阻挡
|
|
|
tmp_x = x
|
|
|
tmp_y = y
|
|
|
# 如果是 2 表示是边上是我方子,1 表示敌方子
|
|
|
if 0 <= y + y_offset <= 18 and 0 <= x + x_offset <= 18:
|
|
|
Cflag = self.chessData[y + y_offset][x + x_offset]['Cstate']
|
|
|
if Cflag != 0:
|
|
|
for step in range(1, 6):
|
|
|
x += x_offset
|
|
|
y += y_offset
|
|
|
if 0 <= x < 18 and 0 <= y < 18:
|
|
|
if Cflag == 2:
|
|
|
if self.chessData[y][x]['Cstate'] == 2 and self.myColor == 2: # ) or (self.chessData[y][x]['Cstate'] == 1 and self.myColor == 1)
|
|
|
nowcount += 1
|
|
|
if space is False:
|
|
|
space = True
|
|
|
elif self.chessData[y][x]['Cstate'] == 1 and self.myColor == 2: # ) or (self.chessData[y][x]['Cstate'] == 1 and self.myColor == 1)
|
|
|
_both += 1
|
|
|
break
|
|
|
else:
|
|
|
if space is None:
|
|
|
space = False
|
|
|
else:
|
|
|
break # 遇到第二个空格退出
|
|
|
elif Cflag == 1:
|
|
|
if self.chessData[y][x]['Cstate'] == 2 and self.myColor == 1:
|
|
|
_both += 1
|
|
|
break
|
|
|
elif self.chessData[y][x]['Cstate'] == 1 and self.myColor == 1:
|
|
|
_nowcount += 1
|
|
|
if _space is False:
|
|
|
_space = True
|
|
|
else:
|
|
|
if _space is None:
|
|
|
_space = False
|
|
|
else:
|
|
|
break
|
|
|
else:
|
|
|
# 遇到边也就是阻挡
|
|
|
if Cflag == 2:
|
|
|
both += 1
|
|
|
elif Cflag == 1:
|
|
|
_both += 1
|
|
|
if space is False:
|
|
|
space = None
|
|
|
if _space is False:
|
|
|
_space = None
|
|
|
x = tmp_x
|
|
|
y = tmp_y
|
|
|
if 0 <= y - y_offset <= 18 and 0 <= x - x_offset <= 18:
|
|
|
_flag = self.chessData[y - y_offset][x - x_offset]['Cstate']
|
|
|
if _flag != 0:
|
|
|
for step in range(1, 6):
|
|
|
x -= x_offset
|
|
|
y -= y_offset
|
|
|
if 0 <= x < 18 and 0 <= y < 18:
|
|
|
if _flag == 2:
|
|
|
if self.chessData[y][x]['Cstate'] == 2 and self.myColor == 2:
|
|
|
nowcount += 1
|
|
|
if space is False:
|
|
|
space = True
|
|
|
elif self.chessData[y][x]['Cstate'] == 1 and self.myColor == 2:
|
|
|
_both += 1
|
|
|
break
|
|
|
else:
|
|
|
if space is None:
|
|
|
space = False
|
|
|
else:
|
|
|
break # 遇到第二个空格退出
|
|
|
elif _flag == 1:
|
|
|
if self.chessData[y][x]['Cstate'] == 2 and self.myColor == 1:
|
|
|
_both += 1
|
|
|
break
|
|
|
elif self.chessData[y][x]['Cstate'] == 1 and self.myColor == 1:
|
|
|
_nowcount += 1
|
|
|
if _space is False:
|
|
|
_space = True
|
|
|
else:
|
|
|
if _space is None:
|
|
|
_space = False
|
|
|
else:
|
|
|
break
|
|
|
else:
|
|
|
# 遇到边也就是阻挡
|
|
|
if _flag == 1:
|
|
|
both += 1
|
|
|
elif _flag == 2:
|
|
|
_both += 1
|
|
|
Score = 0
|
|
|
if nowcount == 4:
|
|
|
Score = 10000
|
|
|
elif _nowcount == 4:
|
|
|
Score = 9000
|
|
|
elif nowcount == 3:
|
|
|
if both == 0:
|
|
|
Score = 1000
|
|
|
elif both == 1:
|
|
|
Score = 100
|
|
|
else:
|
|
|
Score = 0
|
|
|
elif _nowcount == 3:
|
|
|
if _both == 0:
|
|
|
Score = 900
|
|
|
elif _both == 1:
|
|
|
Score = 90
|
|
|
else:
|
|
|
Score = 0
|
|
|
elif nowcount == 2:
|
|
|
if both == 0:
|
|
|
Score = 100
|
|
|
elif both == 1:
|
|
|
Score = 10
|
|
|
else:
|
|
|
Score = 0
|
|
|
elif _nowcount == 2:
|
|
|
if _both == 0:
|
|
|
Score = 90
|
|
|
elif _both == 1:
|
|
|
Score = 9
|
|
|
else:
|
|
|
Score = 0
|
|
|
elif nowcount == 1:
|
|
|
Score = 10
|
|
|
elif _nowcount == 1:
|
|
|
Score = 9
|
|
|
else:
|
|
|
Score = 0
|
|
|
if space or _space:
|
|
|
Score /= 2
|
|
|
return Score
|
|
|
|
|
|
def getPointScore(self, y, x):
|
|
|
Score = 0
|
|
|
offset = [(1, 0), (0, 1), (1, 1), (1, -1)]
|
|
|
for os in offset:
|
|
|
Score += self.getDirectionScore(y, x, os[0], os[1])
|
|
|
return Score
|
|
|
|
|
|
def atuoActive(self):
|
|
|
_Score = 0
|
|
|
position = [-1 for x in range(2)]
|
|
|
for i in range(0, 18):
|
|
|
for j in range(0, 18):
|
|
|
if self.chessData[i][j]['Cstate'] == 0:
|
|
|
Score = self.getPointScore(i, j)
|
|
|
if Score > _Score:
|
|
|
position[0] = i
|
|
|
position[1] = j
|
|
|
_Score = Score
|
|
|
elif Score == _Score:
|
|
|
r = random.randint(0, 100)
|
|
|
if r % 2 == 0:
|
|
|
position[0] = i
|
|
|
position[1] = j
|
|
|
return position
|
|
|
|
|
|
# 设置的策略ai落子
|
|
|
def aiLocation(self, canvas, blackChPieceImg, whiteChPieceImg):
|
|
|
print("do aiLocation")
|
|
|
if self.depth >= 9:
|
|
|
self.depth = 8
|
|
|
position = self.returnChess(self.depth, self.player2Color) # 调用估值函数
|
|
|
# position = self.atuoactive()
|
|
|
if self.chessData[position[0]][position[1]]['Cstate'] == 0:
|
|
|
# print("3:%d"%self.currentStep)
|
|
|
if self.player2Color == 2 and self.currentStep % 2 == 0:
|
|
|
self.chessData[position[0]][position[1]]['Cstate'] = 2
|
|
|
oval = canvas.create_image(position[0] * 36.8 + 41 - 14, position[1] * 34.6 + 20, image=blackChPieceImg, anchor=W)
|
|
|
self.Chessimg[position[0]][position[1]] = oval
|
|
|
self.chessData[position[0]][position[1]]['Cstep'] = self.currentStep
|
|
|
elif self.player2Color == 1 and self.currentStep % 2 != 0:
|
|
|
self.chessData[position[0]][position[1]]['Cstate'] = 1
|
|
|
oval = canvas.create_image(position[0] * 36.8 + 41 - 14, position[1] * 34.6 + 20, image=whiteChPieceImg, anchor=W)
|
|
|
self.Chessimg[position[0]][position[1]] = oval
|
|
|
self.chessData[position[0]][position[1]]['Cstep'] = self.currentStep
|
|
|
xregretFLAG[self.currentStep] = position[0]
|
|
|
yregretFLAG[self.currentStep] = position[1]
|
|
|
self.player = 1 # 玩家下棋标志置0
|
|
|
self.player2 = 0 # 玩家2下棋标志置1
|
|
|
self.currentStep += 1
|
|
|
self.chessData[position[0]][position[1]]['Cstep'] = self.currentStep
|
|
|
a = max(abs(position[0] - 9), abs(position[1] - 9)) # 计算该点到中心的最大的距离
|
|
|
self.depth = max(self.depth, a) # 不断更新Depth的值
|
|
|
# print("4:%d" % self.currentStep)
|
|
|
return True
|
|
|
|
|
|
|
|
|
# 判断对局是否结束,如果结束则返回胜负信息
|
|
|
def chessCheck(self):
|
|
|
for x in range(15): # 1.判断x-轴是否连续五子
|
|
|
for y in range(19):
|
|
|
if self.chessData[x][y]['Cstate'] == 1 and self.chessData[x + 1][y]['Cstate'] == 1 and \
|
|
|
self.chessData[x + 2][y]['Cstate'] == 1 and self.chessData[x + 3][y]['Cstate'] == 1 and \
|
|
|
self.chessData[x + 4][y]['Cstate'] == 1:
|
|
|
self.winFlag = 1
|
|
|
return 1
|
|
|
if self.chessData[x][y]['Cstate'] == 2 and self.chessData[x + 1][y]['Cstate'] == 2 and \
|
|
|
self.chessData[x + 2][y]['Cstate'] == 2 and self.chessData[x + 3][y]['Cstate'] == 2 and \
|
|
|
self.chessData[x + 4][y]['Cstate'] == 2:
|
|
|
self.winFlag = 1
|
|
|
return 2
|
|
|
# 2.判断y-轴是否连续五子
|
|
|
for x in range(19):
|
|
|
for y in range(15):
|
|
|
if self.chessData[x][y]['Cstate'] == 1 and self.chessData[x][y + 1]['Cstate'] == 1 and \
|
|
|
self.chessData[x][y + 2]['Cstate'] == 1 and self.chessData[x][y + 3]['Cstate'] == 1 and \
|
|
|
self.chessData[x][y + 4]['Cstate'] == 1:
|
|
|
self.winFlag = 1
|
|
|
return 1
|
|
|
if self.chessData[x][y]['Cstate'] == 2 and self.chessData[x][y + 1]['Cstate'] == 2 and \
|
|
|
self.chessData[x][y + 2]['Cstate'] == 2 and self.chessData[x][y + 3]['Cstate'] == 2 and \
|
|
|
self.chessData[x][y + 4]['Cstate'] == 2:
|
|
|
self.winFlag = 1
|
|
|
return 2
|
|
|
# 3.判断右上-左下是否连续五子
|
|
|
for x in range(15):
|
|
|
for y in range(4, 19):
|
|
|
if self.chessData[x][y]['Cstate'] == 1 and self.chessData[x + 1][y - 1]['Cstate'] == 1 and \
|
|
|
self.chessData[x + 2][y - 2]['Cstate'] == 1 and self.chessData[x + 3][y - 3]['Cstate'] == 1 and \
|
|
|
self.chessData[x + 4][y - 4]['Cstate'] == 1:
|
|
|
self.winFlag = 1
|
|
|
return 1
|
|
|
if self.chessData[x][y]['Cstate'] == 2 and self.chessData[x + 1][y - 1]['Cstate'] == 2 and \
|
|
|
self.chessData[x + 2][y - 2]['Cstate'] == 2 and self.chessData[x + 3][y - 3]['Cstate'] == 2 and \
|
|
|
self.chessData[x + 4][y - 4]['Cstate'] == 2:
|
|
|
self.winFlag = 1
|
|
|
return 2
|
|
|
# 4.判断左上-右下是否连续五子
|
|
|
for x in range(15):
|
|
|
for y in range(15):
|
|
|
if self.chessData[x][y]['Cstate'] == 1 and self.chessData[x + 1][y + 1]['Cstate'] == 1 and \
|
|
|
self.chessData[x + 2][y + 2]['Cstate'] == 1 and self.chessData[x + 3][y + 3]['Cstate'] == 1 and \
|
|
|
self.chessData[x + 4][y + 4]['Cstate'] == 1:
|
|
|
self.winFlag = 1
|
|
|
return 1
|
|
|
if self.chessData[x][y]['Cstate'] == 2 and self.chessData[x + 1][y + 1]['Cstate'] == 2 and \
|
|
|
self.chessData[x + 2][y + 2]['Cstate'] == 2 and self.chessData[x + 3][y + 3]['Cstate'] == 2 and \
|
|
|
self.chessData[x + 4][y + 4]['Cstate'] == 2:
|
|
|
self.winFlag = 1
|
|
|
return 2
|
|
|
# 5.判断是否是平局
|
|
|
avanum = 0
|
|
|
for x in range(19):
|
|
|
for y in range(19):
|
|
|
if self.chessData[x][y]['Cstate'] == 0: # 判断棋盘中是否有空位,有空位则非平局
|
|
|
break
|
|
|
elif self.chessData[x][y]['Cstate'] != 0:
|
|
|
avanum += 1
|
|
|
if avanum == 365:
|
|
|
return 3
|
|
|
|
|
|
# 展示结果
|
|
|
def resultshow(self, root, canvas, whitech, blackch):
|
|
|
global photo, text
|
|
|
if self.winFlag == 1:
|
|
|
print("resultshow")
|
|
|
# if self.myColor == 1 and self.Gameover == 1 and self.computerColor == 2:
|
|
|
# photo = canvas.create_image(800, 300, image=whitech, anchor=W)
|
|
|
# text = canvas.create_text(850, 300, text='玩家 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
# elif self.myColor == 2 and self.Gameover == 2 and self.computerColor == 1:
|
|
|
# photo = canvas.create_image(800, 300, image=blackch, anchor=W)
|
|
|
# text = canvas.create_text(850, 300, text='玩家 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
# elif self.myColor == 2 and self.Gameover == 1 and self.computerColor == 1:
|
|
|
# photo = canvas.create_image(800, 300, image=whitech, anchor=W)
|
|
|
# text = canvas.create_text(850, 300, text='电脑 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
# elif self.myColor == 1 and self.Gameover == 2 and self.computerColor == 2:
|
|
|
# photo = canvas.create_image(800, 300, image=blackch, anchor=W)
|
|
|
# text = canvas.create_text(850, 300, text='电脑 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
if self.myColor == 2 and self.player2Color == 1 and self.Gameover == 2:
|
|
|
photo = canvas.create_image(800, 300, image=blackch, anchor=W)
|
|
|
text = canvas.create_text(850, 300, text='玩家1 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
elif self.myColor == 1 and self.player2Color == 2 and self.Gameover == 2:
|
|
|
photo = canvas.create_image(800, 300, image=whitech, anchor=W)
|
|
|
text = canvas.create_text(850, 300, text='玩家1 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
elif self.myColor == 2 and self.player2Color == 1 and self.Gameover == 1:
|
|
|
photo = canvas.create_image(800, 300, image=whitech, anchor=W)
|
|
|
text = canvas.create_text(850, 300, text='玩家2 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
elif self.myColor == 1 and self.player2Color == 2 and self.Gameover == 1:
|
|
|
photo = canvas.create_image(800, 300, image=blackch, anchor=W)
|
|
|
text = canvas.create_text(850, 300, text='玩家2 胜利', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
elif self.Gameover != 1 or self.Gameover != 2 or self.Gameover != 3:
|
|
|
canvas.delete(photo)
|
|
|
canvas.delete(text)
|
|
|
elif self.Gameover == 3 and self.winFlag == 0:
|
|
|
canvas.create_text(850, 300, text='平 局', font='Arial,10', fill='#AE0000', anchor=W)
|
|
|
|
|
|
|
|
|
def clearLocation(self, canvas):
|
|
|
image_positions = [(750, 145), (870, 145)]
|
|
|
# Delete images and texts at specified positions
|
|
|
for position in image_positions:
|
|
|
canvas.delete(canvas.find_closest(*position))
|
|
|
canvas.delete(canvas.find_closest(*position))
|
|
|
canvas.delete(canvas.find_closest(*position))
|
|
|
canvas.delete(canvas.find_closest(*position))
|
|
|
# canvas.delete(canvas.find_closest(position[0] + 50, 150))
|
|
|
canvas.update()
|
|
|
|
|
|
# 设置右上方当前落子方状态显示
|
|
|
def curLocation(self, canvas, player, player2, ChessMode, blackch, whitech, photos1, photos2):
|
|
|
print("curLocation !!")
|
|
|
|
|
|
# 删除原来的图片,以便于更新展示现在的状态
|
|
|
for item_id in self.PicLocIds:
|
|
|
canvas.delete(item_id)
|
|
|
# 清空ID列表以避免重复删除
|
|
|
self.PicLocIds.clear()
|
|
|
|
|
|
text_options = {'fill': 'white', 'font': 'Arial,9', 'anchor': W}
|
|
|
image_positions = [(750, 145), (870, 145)]
|
|
|
|
|
|
image_data = []
|
|
|
|
|
|
if ChessMode == 0 or ChessMode == 1:
|
|
|
print("player and player2", player,player2)
|
|
|
if player == 1 and player2 == 0:
|
|
|
image_data = [(blackch, '玩家1'), (None, '玩家2')]
|
|
|
else:
|
|
|
image_data = [(None, '玩家1'), (whitech, '玩家2')]
|
|
|
elif ChessMode == 2:
|
|
|
if player == 1 and player2 == 0:
|
|
|
image_data = [(whitech, '玩家1'), (None, '玩家2')]
|
|
|
else:
|
|
|
image_data = [(None, '玩家1'), (blackch, '玩家2')]
|
|
|
|
|
|
# 创建图像
|
|
|
for i, (image, text) in enumerate(image_data):
|
|
|
id = canvas.create_image(*image_positions[i], image=photos1, anchor=W)
|
|
|
self.PicLocIds.append(id) # 保存图像id
|
|
|
id = canvas.create_image(*image_positions[i], image=image, anchor=W)
|
|
|
self.PicLocIds.append(id)
|
|
|
id = canvas.create_text(image_positions[i][0] + 50, 150, text=text, **text_options)
|
|
|
self.PicLocIds.append(id)
|
|
|
canvas.update()
|
|
|
|
|
|
def playing(self, Chess_Mode, root, canvas, blackch, whitech, photos1, photos2):
|
|
|
if Chess_Mode == 1:
|
|
|
self.myColor = 2 # 先手玩家选择的棋子颜色
|
|
|
self.player2Color = 1 # 后手玩家选择的棋子颜色
|
|
|
# print("self.player2Color set", self.player2Color)
|
|
|
self.player = 1
|
|
|
self.player2 = 0
|
|
|
self.winFlag = 0
|
|
|
self.curLocation(canvas, 1, 1, 1, blackch, whitech, photos1, photos2)
|
|
|
|
|
|
elif Chess_Mode == 2:
|
|
|
self.myColor = 1 # 先手玩家选择的棋子颜色
|
|
|
self.player2Color = 2 # 后手玩家选择的棋子颜色
|
|
|
self.chessData[9][9]['Cstate'] = 2
|
|
|
oval = canvas.create_image(9*36.8 + 41 - 14, 9*34.6 + 20, image=blackch, anchor=W)
|
|
|
self.Chessimg[9][9] = oval
|
|
|
xregretFLAG[self.currentStep] = 9
|
|
|
yregretFLAG[self.currentStep] = 9
|
|
|
# print("self.player2Color set", self.player2Color)
|
|
|
self.player = 1 # 玩家下棋标志置0
|
|
|
self.player2 = 0 # 电脑下棋标志置1
|
|
|
self.currentStep += 1
|
|
|
self.winFlag = 0
|
|
|
self.chessData[9][9]['Cstep'] = self.currentStep
|
|
|
a = max(abs(9 - 9), abs(9 - 9)) # 计算该点到中心的最大的距离
|
|
|
self.depth = max(self.depth, a) # 不断更新Depth的值
|
|
|
self.curLocation(canvas, 1, 0, 2, blackch, whitech, photos1, photos2)
|
|
|
|
|
|
elif Chess_Mode == 0:
|
|
|
self.myColor = 2 # 先手玩家选择的棋子颜色
|
|
|
self.player2Color = 1 # 后手玩家选择的棋子颜色
|
|
|
print("self.player2Color set", self.player2Color)
|
|
|
self.player = 1
|
|
|
self.player2 = 0
|
|
|
self.winFlag = 0
|
|
|
self.curLocation(canvas, 1, 1, 1, blackch, whitech, photos1, photos2)
|
|
|
|
|
|
|
|
|
|
|
|
# def playGameBlack(self, root, playerx, playery, canvas, blackch, whitech, result, photos1, photos2):
|
|
|
# if self.winFlag == 0 and self.player == 1 and self.computer == 0 and self.currentStep % 2 == 0:
|
|
|
# # 判断玩家点击的位置是否可以落子,并落子
|
|
|
# if self.playerLocation(playerx, playery, canvas, blackch, whitech):
|
|
|
# # 如果使用了落子建议,则删除掉所画的落子点
|
|
|
# for i in self.OvaloneNew:
|
|
|
# canvas.delete(i)
|
|
|
# # 设置右上方面板当前落子方状态显示
|
|
|
# self.curLocation(canvas, 0, 1, 2, blackch, whitech, photos1, photos2)
|
|
|
# # 判断此次落子是否结束游戏
|
|
|
# self.Gameover = self.chessCheck()
|
|
|
# root.update()
|
|
|
# if self.winFlag == 0 and self.player == 0 and self.computer == 1 and self.currentStep % 2 != 0:
|
|
|
# root.update()
|
|
|
# self.aiLocation(canvas, blackch, whitech)
|
|
|
# self.Gameover = self.chessCheck()
|
|
|
# self.curLocation(canvas, 1, 0, 1, blackch, whitech, photos1, photos2)
|
|
|
#
|
|
|
# root.update()
|
|
|
# if self.winFlag == 1:
|
|
|
# self.resultshow(root, canvas, whitech, blackch)
|
|
|
# root.update()
|
|
|
#
|
|
|
# def playGameWhite(self, root, playerx, playery, canvas, blackch, whitech, result, photos1, photos2):
|
|
|
# if self.winFlag == 0 and self.player == 1 and self.computer == 0 and self.currentStep % 2 == 1:
|
|
|
# if self.playerLocation(playerx, playery, canvas, blackch, whitech):
|
|
|
# # if self.OvaloneNew != 0:
|
|
|
# # print(self.Ovalone)
|
|
|
# # 如果使用了落子建议,则删除掉所画的落子点
|
|
|
# for i in self.OvaloneNew:
|
|
|
# canvas.delete(i)
|
|
|
# self.curLocation(canvas, 0, 1, 1, blackch, whitech, photos1, photos2)
|
|
|
# self.Gameover = self.chessCheck()
|
|
|
# if self.winFlag == 0 and self.player == 0 and self.computer == 1:
|
|
|
# root.update()
|
|
|
# self.aiLocation(canvas, blackch, whitech)
|
|
|
# self.curLocation(canvas, 1, 0, 2, blackch, whitech, photos1, photos2)
|
|
|
# self.Gameover = self.chessCheck()
|
|
|
# if self.winFlag == 1:
|
|
|
# self.resultshow(root, canvas, whitech, blackch)
|
|
|
# root.update()
|
|
|
#
|
|
|
#
|
|
|
# def doublePeople(self, root, playerx, playery, canvas, blackch, whitech, result, photos1, photos2):
|
|
|
# if self.winFlag == 0:
|
|
|
# if self.player == 1 and self.player2 == 0 and self.currentStep % 2 == 0:
|
|
|
# if self.playerLocation(playerx, playery, canvas, blackch, whitech):
|
|
|
# for i in self.OvaloneNew:
|
|
|
# canvas.delete(i)
|
|
|
# self.player2 = 1
|
|
|
# self.Gameover = self.chessCheck()
|
|
|
# self.curLocation(canvas, 0, 0, 2, blackch, whitech, photos1, photos2)
|
|
|
# if self.winFlag == 1:
|
|
|
# self.resultshow(root, canvas, whitech, blackch)
|
|
|
# root.update()
|
|
|
# elif self.player2 == 1 and self.player == 0 and self.currentStep % 2 != 0:
|
|
|
# if self.playerLocation(playerx, playery, canvas, blackch, whitech):
|
|
|
# for i in self.OvaloneNew:
|
|
|
# canvas.delete(i)
|
|
|
# self.player = 1
|
|
|
# self.player2 = 0
|
|
|
# self.curLocation(canvas, 1, 1, 1, blackch, whitech, photos1, photos2)
|
|
|
# self.Gameover = self.chessCheck()
|
|
|
# if self.winFlag == 1:
|
|
|
# self.resultshow(root, canvas, whitech, blackch)
|
|
|
# root.update()
|
|
|
|
|
|
# 返回一个位置数组
|
|
|
def returnPostion(self, Depth, computercolor):
|
|
|
time.sleep(0.5)
|
|
|
self.newCount = 0
|
|
|
self.maxScore = 0
|
|
|
self.counts = 0
|
|
|
pos = [[0 for y in range(2)] for x in range(10)]
|
|
|
evaFLAG = 0
|
|
|
position = [0, 0] # 初始化位置坐标数组
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if 0 <= i < 19 and 0 <= j < 19:
|
|
|
if self.chessData[i][j]['Cstate'] == 0:
|
|
|
self.score[i][j] = self.countScore(i, j, computercolor)
|
|
|
self.newCount += 1
|
|
|
if self.score[i][j] > 0:
|
|
|
self.counts += 1
|
|
|
if self.maxScore < self.score[i][j]:
|
|
|
self.maxScore = self.score[i][j] # 记录当前棋盘分数的最大值
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if self.chessData[i][j]['Cstate'] != 0:
|
|
|
self.score[i][j] = self.chessData[i][j]['Cstate']
|
|
|
if i < 19 and j < 19 and self.score[i][j] == self.maxScore and self.chessData[i][j]['Cstate'] == 0:
|
|
|
pos[evaFLAG][0] = i
|
|
|
pos[evaFLAG][1] = j
|
|
|
evaFLAG += 1
|
|
|
return pos
|
|
|
|
|
|
# 返回建议落子点的位置和原因
|
|
|
def returnPostionNew(self, Depth, computercolor):
|
|
|
|
|
|
Depth = 8
|
|
|
# depth = 2
|
|
|
time.sleep(0.5)
|
|
|
self.newCount = 0
|
|
|
self.maxScore = 0
|
|
|
self.counts = 0
|
|
|
tempPos = []
|
|
|
tempVal = []
|
|
|
Pos_get = []
|
|
|
pos = [[0 for y in range(2)] for x in range(100)]
|
|
|
evaFLAG = 0
|
|
|
position = [0, 0] # 初始化位置坐标数组
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if 0 <= i < 19 and 0 <= j < 19:
|
|
|
if self.chessData[i][j]['Cstate'] == 0:
|
|
|
self.score[i][j], message = self.countScore(i, j, computercolor) # 计算点的得分
|
|
|
self.newCount += 1
|
|
|
if self.score[i][j] > 0:
|
|
|
self.counts += 1
|
|
|
if self.maxScore < self.score[i][j]:
|
|
|
self.maxScore = self.score[i][j] # 记录当前棋盘分数的最大值
|
|
|
self.maxScorePos = (i, j)
|
|
|
|
|
|
score, message = self.countScore(self.maxScorePos[0], self.maxScorePos[1], computercolor) # 计算点的得分
|
|
|
# print(self.maxScorePos)
|
|
|
for i in range(8 - Depth, 11 + Depth):
|
|
|
for j in range(8 - Depth, 11 + Depth):
|
|
|
if self.chessData[i][j]['Cstate'] != 0:
|
|
|
self.score[i][j] = self.chessData[i][j]['Cstate']
|
|
|
if i < 19 and j < 19 and self.score[i][j] >= self.maxScore - 100 and self.chessData[i][j][
|
|
|
'Cstate'] == 0:
|
|
|
pos[evaFLAG][0] = i
|
|
|
pos[evaFLAG][1] = j
|
|
|
tempPos.append([i, j])
|
|
|
tempVal.append(self.score[i][j])
|
|
|
evaFLAG += 1
|
|
|
# print('\n'.join([' '.join([f'{item:4}' for item in row]) for row in self.score]))
|
|
|
# print(pos)
|
|
|
sorted_id = sorted(range(len(tempVal)), key=lambda k: tempVal[k], reverse=True)
|
|
|
for i in range(min(5,evaFLAG)):
|
|
|
Pos_get.append(tempPos[sorted_id[i]])
|
|
|
return Pos_get, message
|
|
|
# return pos[:5], message
|