You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
6.9 KiB
198 lines
6.9 KiB
5 months ago
|
import os
|
||
|
from skimage import io, img_as_float32
|
||
|
from skimage.color import gray2rgb
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from imageio import mimread
|
||
|
|
||
|
import numpy as np
|
||
|
from torch.utils.data import Dataset
|
||
|
import pandas as pd
|
||
|
from augmentation import AllAugmentationTransform
|
||
|
import glob
|
||
|
|
||
|
|
||
|
def read_video(name, frame_shape):
|
||
|
"""
|
||
|
Read video which can be:
|
||
|
- an image of concatenated frames
|
||
|
- '.mp4' and'.gif'
|
||
|
- folder with videos
|
||
|
"""
|
||
|
|
||
|
if os.path.isdir(name):
|
||
|
frames = sorted(os.listdir(name))
|
||
|
num_frames = len(frames)
|
||
|
video_array = np.array(
|
||
|
[img_as_float32(io.imread(os.path.join(name, frames[idx]))) for idx in range(num_frames)])
|
||
|
elif name.lower().endswith('.png') or name.lower().endswith('.jpg'):
|
||
|
image = io.imread(name)
|
||
|
|
||
|
if len(image.shape) == 2 or image.shape[2] == 1:
|
||
|
image = gray2rgb(image)
|
||
|
|
||
|
if image.shape[2] == 4:
|
||
|
image = image[..., :3]
|
||
|
|
||
|
image = img_as_float32(image)
|
||
|
|
||
|
video_array = np.moveaxis(image, 1, 0)
|
||
|
|
||
|
video_array = video_array.reshape((-1,) + frame_shape)
|
||
|
video_array = np.moveaxis(video_array, 1, 2)
|
||
|
elif name.lower().endswith('.gif') or name.lower().endswith('.mp4') or name.lower().endswith('.mov'):
|
||
|
video = np.array(mimread(name))
|
||
|
if len(video.shape) == 3:
|
||
|
video = np.array([gray2rgb(frame) for frame in video])
|
||
|
if video.shape[-1] == 4:
|
||
|
video = video[..., :3]
|
||
|
video_array = img_as_float32(video)
|
||
|
else:
|
||
|
raise Exception("Unknown file extensions %s" % name)
|
||
|
|
||
|
return video_array
|
||
|
|
||
|
|
||
|
class FramesDataset(Dataset):
|
||
|
"""
|
||
|
Dataset of videos, each video can be represented as:
|
||
|
- an image of concatenated frames
|
||
|
- '.mp4' or '.gif'
|
||
|
- folder with all frames
|
||
|
"""
|
||
|
|
||
|
def __init__(self, root_dir, frame_shape=(256, 256, 3), id_sampling=False, is_train=True,
|
||
|
random_seed=0, pairs_list=None, augmentation_params=None):
|
||
|
self.root_dir = root_dir
|
||
|
self.videos = os.listdir(root_dir)
|
||
|
self.frame_shape = tuple(frame_shape)
|
||
|
self.pairs_list = pairs_list
|
||
|
self.id_sampling = id_sampling
|
||
|
if os.path.exists(os.path.join(root_dir, 'train')):
|
||
|
assert os.path.exists(os.path.join(root_dir, 'test'))
|
||
|
print("Use predefined train-test split.")
|
||
|
if id_sampling:
|
||
|
train_videos = {os.path.basename(video).split('#')[0] for video in
|
||
|
os.listdir(os.path.join(root_dir, 'train'))}
|
||
|
train_videos = list(train_videos)
|
||
|
else:
|
||
|
train_videos = os.listdir(os.path.join(root_dir, 'train'))
|
||
|
test_videos = os.listdir(os.path.join(root_dir, 'test'))
|
||
|
self.root_dir = os.path.join(self.root_dir, 'train' if is_train else 'test')
|
||
|
else:
|
||
|
print("Use random train-test split.")
|
||
|
train_videos, test_videos = train_test_split(self.videos, random_state=random_seed, test_size=0.2)
|
||
|
|
||
|
if is_train:
|
||
|
self.videos = train_videos
|
||
|
else:
|
||
|
self.videos = test_videos
|
||
|
|
||
|
self.is_train = is_train
|
||
|
|
||
|
if self.is_train:
|
||
|
self.transform = AllAugmentationTransform(**augmentation_params)
|
||
|
else:
|
||
|
self.transform = None
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.videos)
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
if self.is_train and self.id_sampling:
|
||
|
name = self.videos[idx]
|
||
|
path = np.random.choice(glob.glob(os.path.join(self.root_dir, name + '*.mp4')))
|
||
|
else:
|
||
|
name = self.videos[idx]
|
||
|
path = os.path.join(self.root_dir, name)
|
||
|
|
||
|
video_name = os.path.basename(path)
|
||
|
|
||
|
if self.is_train and os.path.isdir(path):
|
||
|
frames = os.listdir(path)
|
||
|
num_frames = len(frames)
|
||
|
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2))
|
||
|
video_array = [img_as_float32(io.imread(os.path.join(path, frames[idx]))) for idx in frame_idx]
|
||
|
else:
|
||
|
video_array = read_video(path, frame_shape=self.frame_shape)
|
||
|
num_frames = len(video_array)
|
||
|
frame_idx = np.sort(np.random.choice(num_frames, replace=True, size=2)) if self.is_train else range(
|
||
|
num_frames)
|
||
|
video_array = video_array[frame_idx]
|
||
|
|
||
|
if self.transform is not None:
|
||
|
video_array = self.transform(video_array)
|
||
|
|
||
|
out = {}
|
||
|
if self.is_train:
|
||
|
source = np.array(video_array[0], dtype='float32')
|
||
|
driving = np.array(video_array[1], dtype='float32')
|
||
|
|
||
|
out['driving'] = driving.transpose((2, 0, 1))
|
||
|
out['source'] = source.transpose((2, 0, 1))
|
||
|
else:
|
||
|
video = np.array(video_array, dtype='float32')
|
||
|
out['video'] = video.transpose((3, 0, 1, 2))
|
||
|
|
||
|
out['name'] = video_name
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class DatasetRepeater(Dataset):
|
||
|
"""
|
||
|
Pass several times over the same dataset for better i/o performance
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataset, num_repeats=100):
|
||
|
self.dataset = dataset
|
||
|
self.num_repeats = num_repeats
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.num_repeats * self.dataset.__len__()
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
return self.dataset[idx % self.dataset.__len__()]
|
||
|
|
||
|
|
||
|
class PairedDataset(Dataset):
|
||
|
"""
|
||
|
Dataset of pairs for animation.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, initial_dataset, number_of_pairs, seed=0):
|
||
|
self.initial_dataset = initial_dataset
|
||
|
pairs_list = self.initial_dataset.pairs_list
|
||
|
|
||
|
np.random.seed(seed)
|
||
|
|
||
|
if pairs_list is None:
|
||
|
max_idx = min(number_of_pairs, len(initial_dataset))
|
||
|
nx, ny = max_idx, max_idx
|
||
|
xy = np.mgrid[:nx, :ny].reshape(2, -1).T
|
||
|
number_of_pairs = min(xy.shape[0], number_of_pairs)
|
||
|
self.pairs = xy.take(np.random.choice(xy.shape[0], number_of_pairs, replace=False), axis=0)
|
||
|
else:
|
||
|
videos = self.initial_dataset.videos
|
||
|
name_to_index = {name: index for index, name in enumerate(videos)}
|
||
|
pairs = pd.read_csv(pairs_list)
|
||
|
pairs = pairs[np.logical_and(pairs['source'].isin(videos), pairs['driving'].isin(videos))]
|
||
|
|
||
|
number_of_pairs = min(pairs.shape[0], number_of_pairs)
|
||
|
self.pairs = []
|
||
|
self.start_frames = []
|
||
|
for ind in range(number_of_pairs):
|
||
|
self.pairs.append(
|
||
|
(name_to_index[pairs['driving'].iloc[ind]], name_to_index[pairs['source'].iloc[ind]]))
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.pairs)
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
pair = self.pairs[idx]
|
||
|
first = self.initial_dataset[pair[0]]
|
||
|
second = self.initial_dataset[pair[1]]
|
||
|
first = {'driving_' + key: value for key, value in first.items()}
|
||
|
second = {'source_' + key: value for key, value in second.items()}
|
||
|
|
||
|
return {**first, **second}
|