You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.9 KiB
76 lines
2.9 KiB
from torch import nn
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from modules.util import Hourglass, make_coordinate_grid, AntiAliasInterpolation2d
|
|
|
|
|
|
class KPDetector(nn.Module):
|
|
"""
|
|
Detecting a keypoints. Return keypoint position and jacobian near each keypoint.
|
|
"""
|
|
|
|
def __init__(self, block_expansion, num_kp, num_channels, max_features,
|
|
num_blocks, temperature, estimate_jacobian=False, scale_factor=1,
|
|
single_jacobian_map=False, pad=0):
|
|
super(KPDetector, self).__init__()
|
|
|
|
self.predictor = Hourglass(block_expansion, in_features=num_channels,
|
|
max_features=max_features, num_blocks=num_blocks)
|
|
|
|
self.kp = nn.Conv2d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=(7, 7),
|
|
padding=pad)
|
|
|
|
if estimate_jacobian:
|
|
self.num_jacobian_maps = 1 if single_jacobian_map else num_kp
|
|
self.jacobian = nn.Conv2d(in_channels=self.predictor.out_filters,
|
|
out_channels=4 * self.num_jacobian_maps, kernel_size=(7, 7), padding=pad)
|
|
self.jacobian.weight.data.zero_()
|
|
self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 1] * self.num_jacobian_maps, dtype=torch.float))
|
|
else:
|
|
self.jacobian = None
|
|
|
|
self.temperature = temperature
|
|
self.scale_factor = scale_factor
|
|
if self.scale_factor != 1:
|
|
self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor)
|
|
|
|
def gaussian2kp(self, heatmap):
|
|
"""
|
|
Extract the mean and from a heatmap
|
|
"""
|
|
shape = heatmap.shape
|
|
heatmap = heatmap.unsqueeze(-1)
|
|
grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0)
|
|
value = (heatmap * grid).sum(dim=(2, 3))
|
|
kp = {'value': value}
|
|
|
|
return kp
|
|
|
|
def forward(self, x):
|
|
if self.scale_factor != 1:
|
|
x = self.down(x)
|
|
|
|
feature_map = self.predictor(x)
|
|
prediction = self.kp(feature_map)
|
|
|
|
final_shape = prediction.shape
|
|
heatmap = prediction.view(final_shape[0], final_shape[1], -1)
|
|
heatmap = F.softmax(heatmap / self.temperature, dim=2)
|
|
heatmap = heatmap.view(*final_shape)
|
|
|
|
out = self.gaussian2kp(heatmap)
|
|
|
|
if self.jacobian is not None:
|
|
jacobian_map = self.jacobian(feature_map)
|
|
jacobian_map = jacobian_map.reshape(final_shape[0], self.num_jacobian_maps, 4, final_shape[2],
|
|
final_shape[3])
|
|
heatmap = heatmap.unsqueeze(2)
|
|
|
|
jacobian = heatmap * jacobian_map
|
|
jacobian = jacobian.view(final_shape[0], final_shape[1], 4, -1)
|
|
jacobian = jacobian.sum(dim=-1)
|
|
jacobian = jacobian.view(jacobian.shape[0], jacobian.shape[1], 2, 2)
|
|
out['jacobian'] = jacobian
|
|
|
|
return out
|