You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
8.2 KiB
212 lines
8.2 KiB
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import imageio
|
|
|
|
import os
|
|
from skimage.draw import disk
|
|
|
|
import matplotlib.pyplot as plt
|
|
import collections
|
|
|
|
|
|
class Logger:
|
|
def __init__(self, log_dir, checkpoint_freq=100, visualizer_params=None, zfill_num=8, log_file_name='log.txt'):
|
|
|
|
self.loss_list = []
|
|
self.cpk_dir = log_dir
|
|
self.visualizations_dir = os.path.join(log_dir, 'train-vis')
|
|
if not os.path.exists(self.visualizations_dir):
|
|
os.makedirs(self.visualizations_dir)
|
|
self.log_file = open(os.path.join(log_dir, log_file_name), 'a')
|
|
self.zfill_num = zfill_num
|
|
self.visualizer = Visualizer(**visualizer_params)
|
|
self.checkpoint_freq = checkpoint_freq
|
|
self.epoch = 0
|
|
self.best_loss = float('inf')
|
|
self.names = None
|
|
|
|
def log_scores(self, loss_names):
|
|
loss_mean = np.array(self.loss_list).mean(axis=0)
|
|
|
|
loss_string = "; ".join(["%s - %.5f" % (name, value) for name, value in zip(loss_names, loss_mean)])
|
|
loss_string = str(self.epoch).zfill(self.zfill_num) + ") " + loss_string
|
|
|
|
print(loss_string, file=self.log_file)
|
|
self.loss_list = []
|
|
self.log_file.flush()
|
|
|
|
def visualize_rec(self, inp, out):
|
|
image = self.visualizer.visualize(inp['driving'], inp['source'], out)
|
|
imageio.imsave(os.path.join(self.visualizations_dir, "%s-rec.png" % str(self.epoch).zfill(self.zfill_num)), image)
|
|
|
|
def save_cpk(self, emergent=False):
|
|
cpk = {k: v.state_dict() for k, v in self.models.items()}
|
|
cpk['epoch'] = self.epoch
|
|
cpk_path = os.path.join(self.cpk_dir, '%s-checkpoint.pth.tar' % str(self.epoch).zfill(self.zfill_num))
|
|
if not (os.path.exists(cpk_path) and emergent):
|
|
torch.save(cpk, cpk_path)
|
|
|
|
@staticmethod
|
|
def load_cpk(checkpoint_path, generator=None, discriminator=None, kp_detector=None,
|
|
optimizer_generator=None, optimizer_discriminator=None, optimizer_kp_detector=None):
|
|
if torch.cuda.is_available():
|
|
map_location = None
|
|
else:
|
|
map_location = 'cpu'
|
|
checkpoint = torch.load(checkpoint_path, map_location)
|
|
if generator is not None:
|
|
generator.load_state_dict(checkpoint['generator'])
|
|
if kp_detector is not None:
|
|
kp_detector.load_state_dict(checkpoint['kp_detector'])
|
|
if discriminator is not None:
|
|
try:
|
|
discriminator.load_state_dict(checkpoint['discriminator'])
|
|
except:
|
|
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
|
|
if optimizer_generator is not None:
|
|
optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
|
|
if optimizer_discriminator is not None:
|
|
try:
|
|
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
|
|
except RuntimeError as e:
|
|
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
|
|
if optimizer_kp_detector is not None:
|
|
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
|
|
|
|
return checkpoint['epoch']
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
if 'models' in self.__dict__:
|
|
self.save_cpk()
|
|
self.log_file.close()
|
|
|
|
def log_iter(self, losses):
|
|
losses = collections.OrderedDict(losses.items())
|
|
if self.names is None:
|
|
self.names = list(losses.keys())
|
|
self.loss_list.append(list(losses.values()))
|
|
|
|
def log_epoch(self, epoch, models, inp, out):
|
|
self.epoch = epoch
|
|
self.models = models
|
|
if (self.epoch + 1) % self.checkpoint_freq == 0:
|
|
self.save_cpk()
|
|
self.log_scores(self.names)
|
|
self.visualize_rec(inp, out)
|
|
|
|
|
|
class Visualizer:
|
|
def __init__(self, kp_size=5, draw_border=False, colormap='gist_rainbow'):
|
|
self.kp_size = kp_size
|
|
self.draw_border = draw_border
|
|
self.colormap = plt.get_cmap(colormap)
|
|
|
|
def draw_image_with_kp(self, image, kp_array):
|
|
image = np.copy(image)
|
|
spatial_size = np.array(image.shape[:2][::-1])[np.newaxis]
|
|
kp_array = spatial_size * (kp_array + 1) / 2
|
|
num_kp = kp_array.shape[0]
|
|
for kp_ind, kp in enumerate(kp_array):
|
|
rr, cc = disk(kp[1], kp[0], self.kp_size, shape=image.shape[:2])
|
|
image[rr, cc] = np.array(self.colormap(kp_ind / num_kp))[:3]
|
|
return image
|
|
|
|
def create_image_column_with_kp(self, images, kp):
|
|
image_array = np.array([self.draw_image_with_kp(v, k) for v, k in zip(images, kp)])
|
|
return self.create_image_column(image_array)
|
|
|
|
def create_image_column(self, images):
|
|
if self.draw_border:
|
|
images = np.copy(images)
|
|
images[:, :, [0, -1]] = (1, 1, 1)
|
|
return np.concatenate(list(images), axis=0)
|
|
|
|
def create_image_grid(self, *args):
|
|
out = []
|
|
for arg in args:
|
|
if type(arg) == tuple:
|
|
out.append(self.create_image_column_with_kp(arg[0], arg[1]))
|
|
else:
|
|
out.append(self.create_image_column(arg))
|
|
return np.concatenate(out, axis=1)
|
|
|
|
def visualize(self, driving, source, out):
|
|
images = []
|
|
|
|
# Source image with keypoints
|
|
source = source.data.cpu()
|
|
kp_source = out['kp_source']['value'].data.cpu().numpy()
|
|
source = np.transpose(source, [0, 2, 3, 1])
|
|
images.append((source, kp_source))
|
|
|
|
# Equivariance visualization
|
|
if 'transformed_frame' in out:
|
|
transformed = out['transformed_frame'].data.cpu().numpy()
|
|
transformed = np.transpose(transformed, [0, 2, 3, 1])
|
|
transformed_kp = out['transformed_kp']['value'].data.cpu().numpy()
|
|
images.append((transformed, transformed_kp))
|
|
|
|
# Driving image with keypoints
|
|
kp_driving = out['kp_driving']['value'].data.cpu().numpy()
|
|
driving = driving.data.cpu().numpy()
|
|
driving = np.transpose(driving, [0, 2, 3, 1])
|
|
images.append((driving, kp_driving))
|
|
|
|
# Deformed image
|
|
if 'deformed' in out:
|
|
deformed = out['deformed'].data.cpu().numpy()
|
|
deformed = np.transpose(deformed, [0, 2, 3, 1])
|
|
images.append(deformed)
|
|
|
|
# Result with and without keypoints
|
|
prediction = out['prediction'].data.cpu().numpy()
|
|
prediction = np.transpose(prediction, [0, 2, 3, 1])
|
|
if 'kp_norm' in out:
|
|
kp_norm = out['kp_norm']['value'].data.cpu().numpy()
|
|
images.append((prediction, kp_norm))
|
|
images.append(prediction)
|
|
|
|
|
|
## Occlusion map
|
|
if 'occlusion_map' in out:
|
|
occlusion_map = out['occlusion_map'].data.cpu().repeat(1, 3, 1, 1)
|
|
occlusion_map = F.interpolate(occlusion_map, size=source.shape[1:3]).numpy()
|
|
occlusion_map = np.transpose(occlusion_map, [0, 2, 3, 1])
|
|
images.append(occlusion_map)
|
|
|
|
# Deformed images according to each individual transform
|
|
if 'sparse_deformed' in out:
|
|
full_mask = []
|
|
for i in range(out['sparse_deformed'].shape[1]):
|
|
image = out['sparse_deformed'][:, i].data.cpu()
|
|
image = F.interpolate(image, size=source.shape[1:3])
|
|
mask = out['mask'][:, i:(i+1)].data.cpu().repeat(1, 3, 1, 1)
|
|
mask = F.interpolate(mask, size=source.shape[1:3])
|
|
image = np.transpose(image.numpy(), (0, 2, 3, 1))
|
|
mask = np.transpose(mask.numpy(), (0, 2, 3, 1))
|
|
|
|
if i != 0:
|
|
color = np.array(self.colormap((i - 1) / (out['sparse_deformed'].shape[1] - 1)))[:3]
|
|
else:
|
|
color = np.array((0, 0, 0))
|
|
|
|
color = color.reshape((1, 1, 1, 3))
|
|
|
|
images.append(image)
|
|
if i != 0:
|
|
images.append(mask * color)
|
|
else:
|
|
images.append(mask)
|
|
|
|
full_mask.append(mask * color)
|
|
|
|
images.append(sum(full_mask))
|
|
|
|
image = self.create_image_grid(*images)
|
|
image = (255 * image).astype(np.uint8)
|
|
return image
|