|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <ctime>
|
|
|
|
|
#include <arm_neon.h> //启用 NEON 指令
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
|
|
#define SIZE 1024
|
|
|
|
|
|
|
|
|
|
void transposeMatrix(float** matrix, float** transposed, int size) {
|
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
|
|
|
for (int j = 0; j < size; j++) {
|
|
|
|
|
transposed[j][i] = matrix[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void matmul(float** A, float** B, float** C, int n) {
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
|
|
float sum = 0.0f;
|
|
|
|
|
for (int k = 0; k < n; k += 4)
|
|
|
|
|
{
|
|
|
|
|
float32x4_t vecA, vecB, vecC;
|
|
|
|
|
if (k + 4 <= n)
|
|
|
|
|
{
|
|
|
|
|
// 加载A和B的4个元素,进行向量化计算
|
|
|
|
|
vecA = vld1q_f32(&A[i][k]);
|
|
|
|
|
vecB = vld1q_f32(&B[j][k]);
|
|
|
|
|
// 向量化乘法并累加结果
|
|
|
|
|
vecC = vmulq_f32(vecA, vecB);
|
|
|
|
|
sum += vgetq_lane_f32(vecC, 0) + vgetq_lane_f32(vecC, 1) +
|
|
|
|
|
vgetq_lane_f32(vecC, 2) + vgetq_lane_f32(vecC, 3);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
// 处理剩余的元素
|
|
|
|
|
for (int m = k; m < n; m++)
|
|
|
|
|
{
|
|
|
|
|
sum += A[i][m] * B[j][m];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
C[i][j] = sum;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
srand(time(NULL));
|
|
|
|
|
|
|
|
|
|
float** A = (float**)malloc(SIZE * sizeof(float*));
|
|
|
|
|
float** B = (float**)malloc(SIZE * sizeof(float*));
|
|
|
|
|
float** C = (float**)malloc(SIZE * sizeof(float*));
|
|
|
|
|
float** transposed = (float**)malloc(SIZE * sizeof(float*));
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < SIZE; i++) {
|
|
|
|
|
A[i] = (float*)malloc(SIZE * sizeof(float));
|
|
|
|
|
B[i] = (float*)malloc(SIZE * sizeof(float));
|
|
|
|
|
C[i] = (float*)malloc(SIZE * sizeof(float));
|
|
|
|
|
transposed[i] = (float*)malloc(SIZE * sizeof(float));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < SIZE; i++) {
|
|
|
|
|
for (int j = 0; j < SIZE; j++) {
|
|
|
|
|
A[i][j] = (float)(rand() % 100) / 100.0f;
|
|
|
|
|
B[i][j] = (float)(rand() % 100) / 100.0f;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
transposeMatrix(B, transposed, SIZE);
|
|
|
|
|
|
|
|
|
|
clock_t start = clock();
|
|
|
|
|
matmul(A, transposed, C, SIZE);
|
|
|
|
|
clock_t end = clock();
|
|
|
|
|
|
|
|
|
|
// 计算并输出矩阵乘法的时间
|
|
|
|
|
double multiply_time_spent = double(end - start) / CLOCKS_PER_SEC;
|
|
|
|
|
printf("使用优化的向量乘法:\n当SIZE取%d时,优化的向量乘法时间:%lf秒\n", SIZE, multiply_time_spent);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < SIZE; i++) {
|
|
|
|
|
free(A[i]);
|
|
|
|
|
free(B[i]);
|
|
|
|
|
free(C[i]);
|
|
|
|
|
free(transposed[i]);
|
|
|
|
|
}
|
|
|
|
|
free(A);
|
|
|
|
|
free(B);
|
|
|
|
|
free(C);
|
|
|
|
|
free(transposed);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|