|
|
#include <stdio.h>
|
|
|
#include <arm_neon.h>
|
|
|
#include <ctime>
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
#define M 27
|
|
|
#define N 25
|
|
|
#define Q 12
|
|
|
//A(M*N),B(N*Q),C(M*Q),transposed(Q*N)对于矩阵维度的说明
|
|
|
|
|
|
void transposeMatrix(float** matrix, float** transposed) {
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
for (int j = 0; j < Q; j++) {
|
|
|
transposed[j][i] = matrix[i][j];
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
void matmul_optimized(float** A, float** B, float** C) {
|
|
|
for (int i = 0; i < M; i++) {
|
|
|
for (int j = 0; j < Q; j++) {
|
|
|
float sum = 0.0f;
|
|
|
for (int k = 0; k < N; k += 4)
|
|
|
{
|
|
|
float32x4_t vecA, vecB, vecC;
|
|
|
if (k + 4 <= N)
|
|
|
{
|
|
|
// 加载A和B的4个元素,进行向量化计算
|
|
|
vecA = vld1q_f32(&A[i][k]);
|
|
|
vecB = vld1q_f32(&B[j][k]);
|
|
|
// 向量化乘法并累加结果
|
|
|
vecC = vmulq_f32(vecA, vecB);
|
|
|
sum += vgetq_lane_f32(vecC, 0) + vgetq_lane_f32(vecC, 1) +
|
|
|
vgetq_lane_f32(vecC, 2) + vgetq_lane_f32(vecC, 3);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
// 处理剩余的元素
|
|
|
for (int m = k; m < N; m++)
|
|
|
{
|
|
|
sum += A[i][m] * B[j][m];
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
C[i][j] = sum;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
int main()
|
|
|
{
|
|
|
//矩阵 A 的 COO 格式
|
|
|
float A_values[] = {1, 2, 3,4,5};
|
|
|
int A_rowIndex[] = {0, 0, 1, 2, 2};
|
|
|
int A_colIndex[] = {0, 2, 1,0, 2};
|
|
|
int A_nonZeroCount = 5;
|
|
|
// 矩阵 B 的 COO 格式
|
|
|
float B_values[] = {6,8,7,9};
|
|
|
int B_rowIndex[] = {0,2, 1, 2};
|
|
|
int B_colIndex[] ={0,0,1, 2};
|
|
|
int B_nonZeroCount=4;
|
|
|
|
|
|
|
|
|
//动态分配内存
|
|
|
float** denseMatrixA = (float**)malloc(M * sizeof(float*));
|
|
|
float** denseMatrixB = (float**)malloc(N * sizeof(float*));
|
|
|
float** C = (float**)malloc(M * sizeof(float*));
|
|
|
float** transposed = (float**)malloc(Q * sizeof(float*));
|
|
|
|
|
|
for (int i = 0; i < M; i++) {
|
|
|
denseMatrixA[i] = (float*)malloc(N * sizeof(float));
|
|
|
C[i] = (float*)malloc(Q * sizeof(float));
|
|
|
}
|
|
|
for (int i = 0; i < N; ++i)
|
|
|
{
|
|
|
denseMatrixB[i] = (float*)malloc(Q * sizeof(float));
|
|
|
}
|
|
|
for (int i = 0; i < Q; ++i)
|
|
|
{
|
|
|
transposed[i] = (float*)malloc(N * sizeof(float));
|
|
|
}
|
|
|
|
|
|
// 实现稀疏矩阵转换为普通矩阵
|
|
|
for(int i=0;i<M;i++)
|
|
|
{
|
|
|
for(int j=0;j<N;j++)
|
|
|
{
|
|
|
denseMatrixA[i][j]=0;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
for(int i=0;i<N;i++)
|
|
|
{
|
|
|
for(int j=0;j<Q;j++)
|
|
|
{
|
|
|
denseMatrixB[i][j]=0;
|
|
|
}
|
|
|
}
|
|
|
for(int i = 0; i < A_nonZeroCount; i++)
|
|
|
{
|
|
|
int row = A_rowIndex[i];
|
|
|
int col = A_colIndex[i];
|
|
|
denseMatrixA[row][col] = A_values[i];
|
|
|
}
|
|
|
for(int i = 0; i < B_nonZeroCount; i++)
|
|
|
{
|
|
|
int row = B_rowIndex[i];
|
|
|
int col = B_colIndex[i];
|
|
|
denseMatrixB[row][col] = B_values[i];
|
|
|
}
|
|
|
|
|
|
//打印常规矩阵
|
|
|
printf("A的常规矩阵为:\n");
|
|
|
for(int i=0;i<M;i++)
|
|
|
{
|
|
|
for(int j=0;j<N;j++)
|
|
|
{
|
|
|
printf("%.1f ",denseMatrixA[i][j]);
|
|
|
}
|
|
|
printf("\n");
|
|
|
}
|
|
|
printf("B的常规矩阵为:\n");
|
|
|
for(int i=0;i<N;i++)
|
|
|
{
|
|
|
for(int j=0;j<Q;j++)
|
|
|
{
|
|
|
printf("%.1f ",denseMatrixB[i][j]);
|
|
|
}
|
|
|
printf("\n");
|
|
|
}
|
|
|
|
|
|
//为了之后的运用NEON来相乘,需要对B进行转置
|
|
|
transposeMatrix(denseMatrixB,transposed) ;
|
|
|
|
|
|
clock_t start = clock();
|
|
|
matmul_optimized(denseMatrixA,transposed,C);
|
|
|
clock_t end = clock();
|
|
|
|
|
|
// 计算并输出优化的稀疏矩阵乘法的时间
|
|
|
double time_spent = double(end - start) / CLOCKS_PER_SEC;
|
|
|
printf("当矩阵A的维度为%d*%d,矩阵B的维度为%d*%d时,优化的稀疏矩阵乘法的用时:%lf秒\n", M,N,N,Q,time_spent);
|
|
|
|
|
|
// 释放动态分配的内存
|
|
|
for (int i = 0; i < M; ++i) {
|
|
|
free(denseMatrixA[i]);free(C[i]);
|
|
|
}
|
|
|
for (int i = 0; i < N ;++i) {
|
|
|
free(denseMatrixB[i]);
|
|
|
}
|
|
|
for (int i = 0; i < Q ;++i) {
|
|
|
free(transposed[i]);
|
|
|
}
|
|
|
free(denseMatrixA); free(denseMatrixB); free(C);free(transposed);
|
|
|
} |