# 实验环境:python 3.6 + opencv-python 3.4.14.51 import cv2 import numpy as np import os import shutil import threading import tkinter as tk from PIL import Image, ImageTk # 首先读取config文件,第一行代表当前已经储存的人名个数,接下来每一行是(id,name)标签和对应的人名 id_dict = {} # 字典里存的是id——name键值对 Total_face_num = 999 # 已经被识别有用户名的人脸个数, def init(): # 将config文件内的信息读入到字典中 f = open('config.txt') global Total_face_num Total_face_num = int(f.readline()) for i in range(int(Total_face_num)): line = f.readline() id_name = line.split(' ') id_dict[int(id_name[0])] = id_name[1] f.close() init() # 加载OpenCV人脸检测分类器Haar face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # 准备好识别方法LBPH方法 recognizer = cv2.face.LBPHFaceRecognizer_create() # 打开标号为0的摄像头 camera = cv2.VideoCapture(0) # 摄像头 success, img = camera.read() # 从摄像头读取照片 W_size = 0.1 * camera.get(3) H_size = 0.1 * camera.get(4) system_state_lock = 0 # 标志系统状态的量 0表示无子线程在运行 1表示正在刷脸 2表示正在录入新面孔。 # 相当于mutex锁,用于线程同步 ''' ============================================================================================ 以上是初始化 ============================================================================================ ''' def Get_new_face(): print("正在从摄像头录入新人脸信息 \n") # 存在目录data就清空,不存在就创建,确保最后存在空的data目录 filepath = "data" if not os.path.exists(filepath): os.mkdir(filepath) else: shutil.rmtree(filepath) os.mkdir(filepath) sample_num = 0 # 已经获得的样本数 while True: # 从摄像头读取图片 global success global img # 因为要显示在可视化的控件内,所以要用全局的 success, img = camera.read() # 转为灰度图片 if success is True: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: break # 检测人脸,将每一帧摄像头记录的数据带入OpenCv中,让Classifier判断人脸 # 其中gray为要检测的灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors faces = face_cascade.detectMultiScale(gray, 1.3, 5) # 框选人脸,for循环保证一个能检测的实时动态视频流 for (x, y, w, h) in faces: # xy为左上角的坐标,w为宽,h为高,用rectangle为人脸标记画框 cv2.rectangle(img, (x, y), (x + w, y + w), (255, 0, 0)) # 样本数加1 sample_num += 1 # 保存图像,把灰度图片看成二维数组来检测人脸区域,这里是保存在data缓冲文件夹内 T = Total_face_num cv2.imwrite("./data/User." + str(T) + '.' + str(sample_num) + '.jpg', gray[y:y + h, x:x + w]) pictur_num = 1000 # 表示摄像头拍摄取样的数量,越多效果越好,但获取以及训练的越慢 cv2.waitKey(1) if sample_num > pictur_num: break else: # 控制台内输出进度条 l = int(sample_num / pictur_num * 50) r = int((pictur_num - sample_num) / pictur_num * 50) print("\r" + "%{:.1f}".format(sample_num / pictur_num * 100) + "=" * l + "->" + "_" * r, end="") var.set("%{:.1f}".format(sample_num / pictur_num * 100)) # 控件可视化进度信息 # tk.Tk().update() window.update() # 刷新控件以实时显示进度