You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

32 lines
1.0 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

def get_images_and_labels(path):
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
# 新建连个list用于存放
face_samples = []
ids = []
# 遍历图片路径导入图片和id添加到list中
for image_path in image_paths:
# 通过图片路径将其转换为灰度图片
img = Image.open(image_path).convert('L')
# 将图片转化为数组
img_np = np.array(img, 'uint8')
if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
continue
# 为了获取id将图片和路径分裂并获取
id = int(os.path.split(image_path)[-1].split(".")[1])
# 调用熟悉的人脸分类器
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
faces = detector.detectMultiScale(img_np)
# 将获取的图片和id添加到list中
for (x, y, w, h) in faces:
face_samples.append(img_np[y:y + h, x:x + w])
ids.append(id)
return face_samples, ids