|
|
|
@ -0,0 +1,81 @@
|
|
|
|
|
程序段的功能是将L1,L2中长的链表连接在短的链表后一起,主要操作时间花费在查找短表的终端结点上,所以本算的法时间复杂度为O(min(m,))
|
|
|
|
|
|
|
|
|
|
选择题a,e,d,f,c,b
|
|
|
|
|
选择题3 4 6 5 2 1
|
|
|
|
|
选择题4 3 1 2 5
|
|
|
|
|
|
|
|
|
|
23 49 76 58 34 42 80 95
|
|
|
|
|
49 76 58 80 95
|
|
|
|
|
23 42 34 49 58 76 95 80
|
|
|
|
|
76 58 49 95 40
|
|
|
|
|
|
|
|
|
|
8 0 4 5 64 46 2.5
|
|
|
|
|
|
|
|
|
|
4 30 53
|
|
|
|
|
|
|
|
|
|
A-B(6) C-G(6) E-F(7) C-D(8) 49
|
|
|
|
|
|
|
|
|
|
简答题(共4题;共29.0分)
|
|
|
|
|
1.给定二叉树T,假设n0为T中叶子节点数,n2为T中度为2的节点数,试证明n0=n2+1。 (6.0分)泰考含案
|
|
|
|
|
证明:设 n1为二叉树T中度为1的结点数,n 为总结点数则n=n0+n1+n2(1)再看分支数,除根结点外,每个顶点都对应一个分支数即n-1=n1+2"n2(2)有(1)和(2)可得 n0=n2+1
|
|
|
|
|
4.设计一个算法,通过遍历一趟,将单链表中所有结点的链接方向逆转,仍利用原链表的存储空间。
|
|
|
|
|
```
|
|
|
|
|
void inverse(LinkList &L) (
|
|
|
|
|
// 逆置带头结点的单链表L
|
|
|
|
|
p=L->next; L->next=NULL:
|
|
|
|
|
while ( P)(
|
|
|
|
|
q=P->next;//q指向p的后继
|
|
|
|
|
P->next=L->next:
|
|
|
|
|
L->next=p; //p 插入在头结点之后
|
|
|
|
|
P=q;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
p p=p->lchild p=p->rchild
|
|
|
|
|
|
|
|
|
|
Q.front == Q.rear
|
|
|
|
|
Q.front == (Q.rear+1)%M
|
|
|
|
|
|
|
|
|
|
填空题 7
|
|
|
|
|
LA->data[i]<LB->data[j]
|
|
|
|
|
i<A->length
|
|
|
|
|
j<B->length
|
|
|
|
|
LC->length=k
|
|
|
|
|
|
|
|
|
|
填空题 8
|
|
|
|
|
true BST->left BST->right
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
二分查找思路:要求线性表中的元素必须己按关键字值有序(递增或递减)排列。围绕选取和对比中间位置元素的关键词而进行。
|
|
|
|
|
```
|
|
|
|
|
int binarySearch(SeqList L, int Key) {
|
|
|
|
|
int low = 0;
|
|
|
|
|
int high = L.length - 1;
|
|
|
|
|
while (low <= high) { // 当 low>high 时搜索结束
|
|
|
|
|
int mid = (low + high) / 2;
|
|
|
|
|
if (L.elem[mid] == Key) { // 找到关键字
|
|
|
|
|
return mid;
|
|
|
|
|
} else if (L.elem[mid] < Key) { // 在右半部分继续查找
|
|
|
|
|
low = mid + 1;
|
|
|
|
|
} else { // 在左半部分继续查找
|
|
|
|
|
high = mid - 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return -1; // 没有找到关键字
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
3.设待排序的关键字序列为(12,2,1,30281016*,20618),试分别写出使用希尔排序(增量选取 5,3,1)和快速排序 (6.0分)方法,每趟排序结束后关键字序列的状态
|
|
|
|
|
参考答案
|
|
|
|
|
希尔排序 (增量选取 5,3,1)
|
|
|
|
|
10 2 16 6 18 12 16* 20 30 28(增量选取5)
|
|
|
|
|
6 2 12 10 18 16 16* 20 30 28(增量选取3)
|
|
|
|
|
2 6 10 12 16 16* 18 20 28 30(增量选取1)
|
|
|
|
|
快速排序:
|
|
|
|
|
12 [6 2 10] 12 [28 30 16* 20 16 18]
|
|
|
|
|
6 [2] 6 [10] 12 [28 30 16* 20 16 18]
|
|
|
|
|
28 2 6 10 12 [18 16 16* 20]28 [30]
|
|
|
|
|
18 2 6 10 12 [16* 16] 18 [20] 28 30
|
|
|
|
|
16* 2 6 10 12 16*[16] 18 20 28 30
|
|
|
|
|
左子序列递归深度为 1,右子序列递归深度为 3
|