You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

174 lines
6.7 KiB

import os
from PIL import Image
import torch.utils.data as data
import torchvision.transforms as transforms
import numpy as np
import random
import torch
class PolypDataset(data.Dataset):
"""
dataloader for polyp segmentation tasks
"""
def __init__(self, image_root, gt_root, trainsize, augmentations):
self.trainsize = trainsize
self.augmentations = augmentations
print(self.augmentations)
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg') or f.endswith('.png')]
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.png') or f.endswith('.jpg')]
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.filter_files()
self.size = len(self.images)
if self.augmentations == 'True':
print('Using RandomRotation, RandomFlip')
self.img_transform = transforms.Compose([
transforms.RandomRotation(90, resample=False, expand=False, center=None, fill=None),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
self.gt_transform = transforms.Compose([
transforms.RandomRotation(90, resample=False, expand=False, center=None, fill=None),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()])
else:
print('no augmentation')
self.img_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
self.gt_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()])
def __getitem__(self, index):
image = self.rgb_loader(self.images[index])
gt = self.binary_loader(self.gts[index])
seed = np.random.randint(2147483647) # make a seed with numpy generator
random.seed(seed) # apply this seed to img tranfsorms
torch.manual_seed(seed) # needed for torchvision 0.7
if self.img_transform is not None:
image = self.img_transform(image)
random.seed(seed) # apply this seed to img tranfsorms
torch.manual_seed(seed) # needed for torchvision 0.7
if self.gt_transform is not None:
gt = self.gt_transform(gt)
return image, gt
def filter_files(self):
assert len(self.images) == len(self.gts)
images = []
gts = []
for img_path, gt_path in zip(self.images, self.gts):
img = Image.open(img_path)
gt = Image.open(gt_path)
if img.size == gt.size:
images.append(img_path)
gts.append(gt_path)
self.images = images
self.gts = gts
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
# return img.convert('1')
return img.convert('L')
def convert2polar(self, img, gt):
center = polar_transformations.centroid(gt)
img = polar_transformations.to_polar(img, center)
gt = polar_transformations.to_polar(gt, center)
return img, gt
#center_max_shift = 0.05 * LesionDataset.height
#center = np.array(center)
#center = (
#center[0] + np.random.uniform(-center_max_shift, center_max_shift),
#center[1] + np.random.uniform(-center_max_shift, center_max_shift))
## to PyTorch expected format
#input = input.transpose(2, 0, 1)
#label = np.expand_dims(label, axis=-1)
#label = label.transpose(2, 0, 1)
#input_tensor = torch.from_numpy(input)
def resize(self, img, gt):
assert img.size == gt.size
w, h = img.size
if h < self.trainsize or w < self.trainsize:
h = max(h, self.trainsize)
w = max(w, self.trainsize)
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), Image.NEAREST)
else:
return img, gt
def __len__(self):
return self.size
def get_loader(image_root, gt_root, batchsize, trainsize, shuffle=False, num_workers=4, pin_memory=True, augmentation=False): #shuffle=True
dataset = PolypDataset(image_root, gt_root, trainsize, augmentation)
data_loader = data.DataLoader(dataset=dataset,
batch_size=batchsize,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=pin_memory)
return data_loader
class test_dataset:
def __init__(self, image_root, gt_root, testsize):
self.testsize = testsize
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg') or f.endswith('.png')]
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.tif') or f.endswith('.png' or f.endswith('.jpg'))]
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.transform = transforms.Compose([
transforms.Resize((self.testsize, self.testsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
self.gt_transform = transforms.ToTensor()
self.size = len(self.images)
self.index = 0
def load_data(self):
image = self.rgb_loader(self.images[self.index])
image = self.transform(image).unsqueeze(0)
gt = self.binary_loader(self.gts[self.index])
name = self.images[self.index].split('/')[-1]
if name.endswith('.jpg'):
name = name.split('.jpg')[0] + '.png'
self.index += 1
return image, gt, name
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')