Branch data Line data Source code
1 : : // Copyright 2005, Google Inc.
2 : : // All rights reserved.
3 : : //
4 : : // Redistribution and use in source and binary forms, with or without
5 : : // modification, are permitted provided that the following conditions are
6 : : // met:
7 : : //
8 : : // * Redistributions of source code must retain the above copyright
9 : : // notice, this list of conditions and the following disclaimer.
10 : : // * Redistributions in binary form must reproduce the above
11 : : // copyright notice, this list of conditions and the following disclaimer
12 : : // in the documentation and/or other materials provided with the
13 : : // distribution.
14 : : // * Neither the name of Google Inc. nor the names of its
15 : : // contributors may be used to endorse or promote products derived from
16 : : // this software without specific prior written permission.
17 : : //
18 : : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 : : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 : : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 : : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 : : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 : : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 : : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 : : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 : : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 : : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 : : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 : : //
30 : : // The Google C++ Testing and Mocking Framework (Google Test)
31 : : //
32 : : // This header file declares functions and macros used internally by
33 : : // Google Test. They are subject to change without notice.
34 : :
35 : : // GOOGLETEST_CM0001 DO NOT DELETE
36 : :
37 : : #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 : : #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 : :
40 : : #include "gtest/internal/gtest-port.h"
41 : :
42 : : #if GTEST_OS_LINUX
43 : : # include <stdlib.h>
44 : : # include <sys/types.h>
45 : : # include <sys/wait.h>
46 : : # include <unistd.h>
47 : : #endif // GTEST_OS_LINUX
48 : :
49 : : #if GTEST_HAS_EXCEPTIONS
50 : : # include <stdexcept>
51 : : #endif
52 : :
53 : : #include <ctype.h>
54 : : #include <float.h>
55 : : #include <string.h>
56 : : #include <iomanip>
57 : : #include <limits>
58 : : #include <map>
59 : : #include <set>
60 : : #include <string>
61 : : #include <vector>
62 : :
63 : : #include "gtest/gtest-message.h"
64 : : #include "gtest/internal/gtest-filepath.h"
65 : : #include "gtest/internal/gtest-string.h"
66 : : #include "gtest/internal/gtest-type-util.h"
67 : :
68 : : // Due to C++ preprocessor weirdness, we need double indirection to
69 : : // concatenate two tokens when one of them is __LINE__. Writing
70 : : //
71 : : // foo ## __LINE__
72 : : //
73 : : // will result in the token foo__LINE__, instead of foo followed by
74 : : // the current line number. For more details, see
75 : : // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
76 : : #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
77 : : #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
78 : :
79 : : // Stringifies its argument.
80 : : #define GTEST_STRINGIFY_(name) #name
81 : :
82 : : class ProtocolMessage;
83 : : namespace proto2 { class Message; }
84 : :
85 : : namespace testing {
86 : :
87 : : // Forward declarations.
88 : :
89 : : class AssertionResult; // Result of an assertion.
90 : : class Message; // Represents a failure message.
91 : : class Test; // Represents a test.
92 : : class TestInfo; // Information about a test.
93 : : class TestPartResult; // Result of a test part.
94 : : class UnitTest; // A collection of test cases.
95 : :
96 : : template <typename T>
97 : : ::std::string PrintToString(const T& value);
98 : :
99 : : namespace internal {
100 : :
101 : : struct TraceInfo; // Information about a trace point.
102 : : class TestInfoImpl; // Opaque implementation of TestInfo
103 : : class UnitTestImpl; // Opaque implementation of UnitTest
104 : :
105 : : // The text used in failure messages to indicate the start of the
106 : : // stack trace.
107 : : GTEST_API_ extern const char kStackTraceMarker[];
108 : :
109 : : // Two overloaded helpers for checking at compile time whether an
110 : : // expression is a null pointer literal (i.e. NULL or any 0-valued
111 : : // compile-time integral constant). Their return values have
112 : : // different sizes, so we can use sizeof() to test which version is
113 : : // picked by the compiler. These helpers have no implementations, as
114 : : // we only need their signatures.
115 : : //
116 : : // Given IsNullLiteralHelper(x), the compiler will pick the first
117 : : // version if x can be implicitly converted to Secret*, and pick the
118 : : // second version otherwise. Since Secret is a secret and incomplete
119 : : // type, the only expression a user can write that has type Secret* is
120 : : // a null pointer literal. Therefore, we know that x is a null
121 : : // pointer literal if and only if the first version is picked by the
122 : : // compiler.
123 : : char IsNullLiteralHelper(Secret* p);
124 : : char (&IsNullLiteralHelper(...))[2]; // NOLINT
125 : :
126 : : // A compile-time bool constant that is true if and only if x is a
127 : : // null pointer literal (i.e. NULL or any 0-valued compile-time
128 : : // integral constant).
129 : : #ifdef GTEST_ELLIPSIS_NEEDS_POD_
130 : : // We lose support for NULL detection where the compiler doesn't like
131 : : // passing non-POD classes through ellipsis (...).
132 : : # define GTEST_IS_NULL_LITERAL_(x) false
133 : : #else
134 : : # define GTEST_IS_NULL_LITERAL_(x) \
135 : : (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
136 : : #endif // GTEST_ELLIPSIS_NEEDS_POD_
137 : :
138 : : // Appends the user-supplied message to the Google-Test-generated message.
139 : : GTEST_API_ std::string AppendUserMessage(
140 : : const std::string& gtest_msg, const Message& user_msg);
141 : :
142 : : #if GTEST_HAS_EXCEPTIONS
143 : :
144 : : GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
145 : : /* an exported class was derived from a class that was not exported */)
146 : :
147 : : // This exception is thrown by (and only by) a failed Google Test
148 : : // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
149 : : // are enabled). We derive it from std::runtime_error, which is for
150 : : // errors presumably detectable only at run time. Since
151 : : // std::runtime_error inherits from std::exception, many testing
152 : : // frameworks know how to extract and print the message inside it.
153 : : class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
154 : : public:
155 : : explicit GoogleTestFailureException(const TestPartResult& failure);
156 : : };
157 : :
158 : : GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
159 : :
160 : : #endif // GTEST_HAS_EXCEPTIONS
161 : :
162 : : namespace edit_distance {
163 : : // Returns the optimal edits to go from 'left' to 'right'.
164 : : // All edits cost the same, with replace having lower priority than
165 : : // add/remove.
166 : : // Simple implementation of the Wagner-Fischer algorithm.
167 : : // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
168 : : enum EditType { kMatch, kAdd, kRemove, kReplace };
169 : : GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
170 : : const std::vector<size_t>& left, const std::vector<size_t>& right);
171 : :
172 : : // Same as above, but the input is represented as strings.
173 : : GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
174 : : const std::vector<std::string>& left,
175 : : const std::vector<std::string>& right);
176 : :
177 : : // Create a diff of the input strings in Unified diff format.
178 : : GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
179 : : const std::vector<std::string>& right,
180 : : size_t context = 2);
181 : :
182 : : } // namespace edit_distance
183 : :
184 : : // Calculate the diff between 'left' and 'right' and return it in unified diff
185 : : // format.
186 : : // If not null, stores in 'total_line_count' the total number of lines found
187 : : // in left + right.
188 : : GTEST_API_ std::string DiffStrings(const std::string& left,
189 : : const std::string& right,
190 : : size_t* total_line_count);
191 : :
192 : : // Constructs and returns the message for an equality assertion
193 : : // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
194 : : //
195 : : // The first four parameters are the expressions used in the assertion
196 : : // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
197 : : // where foo is 5 and bar is 6, we have:
198 : : //
199 : : // expected_expression: "foo"
200 : : // actual_expression: "bar"
201 : : // expected_value: "5"
202 : : // actual_value: "6"
203 : : //
204 : : // The ignoring_case parameter is true iff the assertion is a
205 : : // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
206 : : // be inserted into the message.
207 : : GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
208 : : const char* actual_expression,
209 : : const std::string& expected_value,
210 : : const std::string& actual_value,
211 : : bool ignoring_case);
212 : :
213 : : // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
214 : : GTEST_API_ std::string GetBoolAssertionFailureMessage(
215 : : const AssertionResult& assertion_result,
216 : : const char* expression_text,
217 : : const char* actual_predicate_value,
218 : : const char* expected_predicate_value);
219 : :
220 : : // This template class represents an IEEE floating-point number
221 : : // (either single-precision or double-precision, depending on the
222 : : // template parameters).
223 : : //
224 : : // The purpose of this class is to do more sophisticated number
225 : : // comparison. (Due to round-off error, etc, it's very unlikely that
226 : : // two floating-points will be equal exactly. Hence a naive
227 : : // comparison by the == operation often doesn't work.)
228 : : //
229 : : // Format of IEEE floating-point:
230 : : //
231 : : // The most-significant bit being the leftmost, an IEEE
232 : : // floating-point looks like
233 : : //
234 : : // sign_bit exponent_bits fraction_bits
235 : : //
236 : : // Here, sign_bit is a single bit that designates the sign of the
237 : : // number.
238 : : //
239 : : // For float, there are 8 exponent bits and 23 fraction bits.
240 : : //
241 : : // For double, there are 11 exponent bits and 52 fraction bits.
242 : : //
243 : : // More details can be found at
244 : : // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
245 : : //
246 : : // Template parameter:
247 : : //
248 : : // RawType: the raw floating-point type (either float or double)
249 : : template <typename RawType>
250 : : class FloatingPoint {
251 : : public:
252 : : // Defines the unsigned integer type that has the same size as the
253 : : // floating point number.
254 : : typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
255 : :
256 : : // Constants.
257 : :
258 : : // # of bits in a number.
259 : : static const size_t kBitCount = 8*sizeof(RawType);
260 : :
261 : : // # of fraction bits in a number.
262 : : static const size_t kFractionBitCount =
263 : : std::numeric_limits<RawType>::digits - 1;
264 : :
265 : : // # of exponent bits in a number.
266 : : static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
267 : :
268 : : // The mask for the sign bit.
269 : : static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
270 : :
271 : : // The mask for the fraction bits.
272 : : static const Bits kFractionBitMask =
273 : : ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
274 : :
275 : : // The mask for the exponent bits.
276 : : static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
277 : :
278 : : // How many ULP's (Units in the Last Place) we want to tolerate when
279 : : // comparing two numbers. The larger the value, the more error we
280 : : // allow. A 0 value means that two numbers must be exactly the same
281 : : // to be considered equal.
282 : : //
283 : : // The maximum error of a single floating-point operation is 0.5
284 : : // units in the last place. On Intel CPU's, all floating-point
285 : : // calculations are done with 80-bit precision, while double has 64
286 : : // bits. Therefore, 4 should be enough for ordinary use.
287 : : //
288 : : // See the following article for more details on ULP:
289 : : // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
290 : : static const size_t kMaxUlps = 4;
291 : :
292 : : // Constructs a FloatingPoint from a raw floating-point number.
293 : : //
294 : : // On an Intel CPU, passing a non-normalized NAN (Not a Number)
295 : : // around may change its bits, although the new value is guaranteed
296 : : // to be also a NAN. Therefore, don't expect this constructor to
297 : : // preserve the bits in x when x is a NAN.
298 : : explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
299 : :
300 : : // Static methods
301 : :
302 : : // Reinterprets a bit pattern as a floating-point number.
303 : : //
304 : : // This function is needed to test the AlmostEquals() method.
305 : : static RawType ReinterpretBits(const Bits bits) {
306 : : FloatingPoint fp(0);
307 : : fp.u_.bits_ = bits;
308 : : return fp.u_.value_;
309 : : }
310 : :
311 : : // Returns the floating-point number that represent positive infinity.
312 : : static RawType Infinity() {
313 : : return ReinterpretBits(kExponentBitMask);
314 : : }
315 : :
316 : : // Returns the maximum representable finite floating-point number.
317 : : static RawType Max();
318 : :
319 : : // Non-static methods
320 : :
321 : : // Returns the bits that represents this number.
322 : : const Bits &bits() const { return u_.bits_; }
323 : :
324 : : // Returns the exponent bits of this number.
325 : : Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
326 : :
327 : : // Returns the fraction bits of this number.
328 : : Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
329 : :
330 : : // Returns the sign bit of this number.
331 : : Bits sign_bit() const { return kSignBitMask & u_.bits_; }
332 : :
333 : : // Returns true iff this is NAN (not a number).
334 : : bool is_nan() const {
335 : : // It's a NAN if the exponent bits are all ones and the fraction
336 : : // bits are not entirely zeros.
337 : : return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
338 : : }
339 : :
340 : : // Returns true iff this number is at most kMaxUlps ULP's away from
341 : : // rhs. In particular, this function:
342 : : //
343 : : // - returns false if either number is (or both are) NAN.
344 : : // - treats really large numbers as almost equal to infinity.
345 : : // - thinks +0.0 and -0.0 are 0 DLP's apart.
346 : : bool AlmostEquals(const FloatingPoint& rhs) const {
347 : : // The IEEE standard says that any comparison operation involving
348 : : // a NAN must return false.
349 : : if (is_nan() || rhs.is_nan()) return false;
350 : :
351 : : return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
352 : : <= kMaxUlps;
353 : : }
354 : :
355 : : private:
356 : : // The data type used to store the actual floating-point number.
357 : : union FloatingPointUnion {
358 : : RawType value_; // The raw floating-point number.
359 : : Bits bits_; // The bits that represent the number.
360 : : };
361 : :
362 : : // Converts an integer from the sign-and-magnitude representation to
363 : : // the biased representation. More precisely, let N be 2 to the
364 : : // power of (kBitCount - 1), an integer x is represented by the
365 : : // unsigned number x + N.
366 : : //
367 : : // For instance,
368 : : //
369 : : // -N + 1 (the most negative number representable using
370 : : // sign-and-magnitude) is represented by 1;
371 : : // 0 is represented by N; and
372 : : // N - 1 (the biggest number representable using
373 : : // sign-and-magnitude) is represented by 2N - 1.
374 : : //
375 : : // Read http://en.wikipedia.org/wiki/Signed_number_representations
376 : : // for more details on signed number representations.
377 : : static Bits SignAndMagnitudeToBiased(const Bits &sam) {
378 : : if (kSignBitMask & sam) {
379 : : // sam represents a negative number.
380 : : return ~sam + 1;
381 : : } else {
382 : : // sam represents a positive number.
383 : : return kSignBitMask | sam;
384 : : }
385 : : }
386 : :
387 : : // Given two numbers in the sign-and-magnitude representation,
388 : : // returns the distance between them as an unsigned number.
389 : : static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
390 : : const Bits &sam2) {
391 : : const Bits biased1 = SignAndMagnitudeToBiased(sam1);
392 : : const Bits biased2 = SignAndMagnitudeToBiased(sam2);
393 : : return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
394 : : }
395 : :
396 : : FloatingPointUnion u_;
397 : : };
398 : :
399 : : // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
400 : : // macro defined by <windows.h>.
401 : : template <>
402 : : inline float FloatingPoint<float>::Max() { return FLT_MAX; }
403 : : template <>
404 : : inline double FloatingPoint<double>::Max() { return DBL_MAX; }
405 : :
406 : : // Typedefs the instances of the FloatingPoint template class that we
407 : : // care to use.
408 : : typedef FloatingPoint<float> Float;
409 : : typedef FloatingPoint<double> Double;
410 : :
411 : : // In order to catch the mistake of putting tests that use different
412 : : // test fixture classes in the same test case, we need to assign
413 : : // unique IDs to fixture classes and compare them. The TypeId type is
414 : : // used to hold such IDs. The user should treat TypeId as an opaque
415 : : // type: the only operation allowed on TypeId values is to compare
416 : : // them for equality using the == operator.
417 : : typedef const void* TypeId;
418 : :
419 : : template <typename T>
420 : : class TypeIdHelper {
421 : : public:
422 : : // dummy_ must not have a const type. Otherwise an overly eager
423 : : // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
424 : : // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
425 : : static bool dummy_;
426 : : };
427 : :
428 : : template <typename T>
429 : : bool TypeIdHelper<T>::dummy_ = false;
430 : :
431 : : // GetTypeId<T>() returns the ID of type T. Different values will be
432 : : // returned for different types. Calling the function twice with the
433 : : // same type argument is guaranteed to return the same ID.
434 : : template <typename T>
435 : : TypeId GetTypeId() {
436 : : // The compiler is required to allocate a different
437 : : // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
438 : : // the template. Therefore, the address of dummy_ is guaranteed to
439 : : // be unique.
440 : : return &(TypeIdHelper<T>::dummy_);
441 : : }
442 : :
443 : : // Returns the type ID of ::testing::Test. Always call this instead
444 : : // of GetTypeId< ::testing::Test>() to get the type ID of
445 : : // ::testing::Test, as the latter may give the wrong result due to a
446 : : // suspected linker bug when compiling Google Test as a Mac OS X
447 : : // framework.
448 : : GTEST_API_ TypeId GetTestTypeId();
449 : :
450 : : // Defines the abstract factory interface that creates instances
451 : : // of a Test object.
452 : : class TestFactoryBase {
453 : : public:
454 : 55 : virtual ~TestFactoryBase() {}
455 : :
456 : : // Creates a test instance to run. The instance is both created and destroyed
457 : : // within TestInfoImpl::Run()
458 : : virtual Test* CreateTest() = 0;
459 : :
460 : : protected:
461 : 55 : TestFactoryBase() {}
462 : :
463 : : private:
464 : : GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
465 : : };
466 : :
467 : : // This class provides implementation of TeastFactoryBase interface.
468 : : // It is used in TEST and TEST_F macros.
469 : : template <class TestClass>
470 : : class TestFactoryImpl : public TestFactoryBase {
471 : : public:
472 [ + - ]: 55 : virtual Test* CreateTest() { return new TestClass; }
473 : : };
474 : :
475 : : #if GTEST_OS_WINDOWS
476 : :
477 : : // Predicate-formatters for implementing the HRESULT checking macros
478 : : // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
479 : : // We pass a long instead of HRESULT to avoid causing an
480 : : // include dependency for the HRESULT type.
481 : : GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
482 : : long hr); // NOLINT
483 : : GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
484 : : long hr); // NOLINT
485 : :
486 : : #endif // GTEST_OS_WINDOWS
487 : :
488 : : // Types of SetUpTestCase() and TearDownTestCase() functions.
489 : : typedef void (*SetUpTestCaseFunc)();
490 : : typedef void (*TearDownTestCaseFunc)();
491 : :
492 : : struct CodeLocation {
493 : 55 : CodeLocation(const std::string& a_file, int a_line)
494 : 55 : : file(a_file), line(a_line) {}
495 : :
496 : : std::string file;
497 : : int line;
498 : : };
499 : :
500 : : // Creates a new TestInfo object and registers it with Google Test;
501 : : // returns the created object.
502 : : //
503 : : // Arguments:
504 : : //
505 : : // test_case_name: name of the test case
506 : : // name: name of the test
507 : : // type_param the name of the test's type parameter, or NULL if
508 : : // this is not a typed or a type-parameterized test.
509 : : // value_param text representation of the test's value parameter,
510 : : // or NULL if this is not a type-parameterized test.
511 : : // code_location: code location where the test is defined
512 : : // fixture_class_id: ID of the test fixture class
513 : : // set_up_tc: pointer to the function that sets up the test case
514 : : // tear_down_tc: pointer to the function that tears down the test case
515 : : // factory: pointer to the factory that creates a test object.
516 : : // The newly created TestInfo instance will assume
517 : : // ownership of the factory object.
518 : : GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
519 : : const char* test_case_name,
520 : : const char* name,
521 : : const char* type_param,
522 : : const char* value_param,
523 : : CodeLocation code_location,
524 : : TypeId fixture_class_id,
525 : : SetUpTestCaseFunc set_up_tc,
526 : : TearDownTestCaseFunc tear_down_tc,
527 : : TestFactoryBase* factory);
528 : :
529 : : // If *pstr starts with the given prefix, modifies *pstr to be right
530 : : // past the prefix and returns true; otherwise leaves *pstr unchanged
531 : : // and returns false. None of pstr, *pstr, and prefix can be NULL.
532 : : GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
533 : :
534 : : #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
535 : :
536 : : GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
537 : : /* class A needs to have dll-interface to be used by clients of class B */)
538 : :
539 : : // State of the definition of a type-parameterized test case.
540 : : class GTEST_API_ TypedTestCasePState {
541 : : public:
542 : : TypedTestCasePState() : registered_(false) {}
543 : :
544 : : // Adds the given test name to defined_test_names_ and return true
545 : : // if the test case hasn't been registered; otherwise aborts the
546 : : // program.
547 : : bool AddTestName(const char* file, int line, const char* case_name,
548 : : const char* test_name) {
549 : : if (registered_) {
550 : : fprintf(stderr, "%s Test %s must be defined before "
551 : : "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
552 : : FormatFileLocation(file, line).c_str(), test_name, case_name);
553 : : fflush(stderr);
554 : : posix::Abort();
555 : : }
556 : : registered_tests_.insert(
557 : : ::std::make_pair(test_name, CodeLocation(file, line)));
558 : : return true;
559 : : }
560 : :
561 : : bool TestExists(const std::string& test_name) const {
562 : : return registered_tests_.count(test_name) > 0;
563 : : }
564 : :
565 : : const CodeLocation& GetCodeLocation(const std::string& test_name) const {
566 : : RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
567 : : GTEST_CHECK_(it != registered_tests_.end());
568 : : return it->second;
569 : : }
570 : :
571 : : // Verifies that registered_tests match the test names in
572 : : // defined_test_names_; returns registered_tests if successful, or
573 : : // aborts the program otherwise.
574 : : const char* VerifyRegisteredTestNames(
575 : : const char* file, int line, const char* registered_tests);
576 : :
577 : : private:
578 : : typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
579 : :
580 : : bool registered_;
581 : : RegisteredTestsMap registered_tests_;
582 : : };
583 : :
584 : : GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
585 : :
586 : : // Skips to the first non-space char after the first comma in 'str';
587 : : // returns NULL if no comma is found in 'str'.
588 : : inline const char* SkipComma(const char* str) {
589 : : const char* comma = strchr(str, ',');
590 : : if (comma == NULL) {
591 : : return NULL;
592 : : }
593 : : while (IsSpace(*(++comma))) {}
594 : : return comma;
595 : : }
596 : :
597 : : // Returns the prefix of 'str' before the first comma in it; returns
598 : : // the entire string if it contains no comma.
599 : : inline std::string GetPrefixUntilComma(const char* str) {
600 : : const char* comma = strchr(str, ',');
601 : : return comma == NULL ? str : std::string(str, comma);
602 : : }
603 : :
604 : : // Splits a given string on a given delimiter, populating a given
605 : : // vector with the fields.
606 : : void SplitString(const ::std::string& str, char delimiter,
607 : : ::std::vector< ::std::string>* dest);
608 : :
609 : : // The default argument to the template below for the case when the user does
610 : : // not provide a name generator.
611 : : struct DefaultNameGenerator {
612 : : template <typename T>
613 : : static std::string GetName(int i) {
614 : : return StreamableToString(i);
615 : : }
616 : : };
617 : :
618 : : template <typename Provided = DefaultNameGenerator>
619 : : struct NameGeneratorSelector {
620 : : typedef Provided type;
621 : : };
622 : :
623 : : template <typename NameGenerator>
624 : : void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {}
625 : :
626 : : template <typename NameGenerator, typename Types>
627 : : void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
628 : : result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
629 : : GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
630 : : i + 1);
631 : : }
632 : :
633 : : template <typename NameGenerator, typename Types>
634 : : std::vector<std::string> GenerateNames() {
635 : : std::vector<std::string> result;
636 : : GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
637 : : return result;
638 : : }
639 : :
640 : : // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
641 : : // registers a list of type-parameterized tests with Google Test. The
642 : : // return value is insignificant - we just need to return something
643 : : // such that we can call this function in a namespace scope.
644 : : //
645 : : // Implementation note: The GTEST_TEMPLATE_ macro declares a template
646 : : // template parameter. It's defined in gtest-type-util.h.
647 : : template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
648 : : class TypeParameterizedTest {
649 : : public:
650 : : // 'index' is the index of the test in the type list 'Types'
651 : : // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
652 : : // Types). Valid values for 'index' are [0, N - 1] where N is the
653 : : // length of Types.
654 : : static bool Register(const char* prefix, const CodeLocation& code_location,
655 : : const char* case_name, const char* test_names, int index,
656 : : const std::vector<std::string>& type_names =
657 : : GenerateNames<DefaultNameGenerator, Types>()) {
658 : : typedef typename Types::Head Type;
659 : : typedef Fixture<Type> FixtureClass;
660 : : typedef typename GTEST_BIND_(TestSel, Type) TestClass;
661 : :
662 : : // First, registers the first type-parameterized test in the type
663 : : // list.
664 : : MakeAndRegisterTestInfo(
665 : : (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
666 : : "/" + type_names[index])
667 : : .c_str(),
668 : : StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
669 : : GetTypeName<Type>().c_str(),
670 : : NULL, // No value parameter.
671 : : code_location, GetTypeId<FixtureClass>(), TestClass::SetUpTestCase,
672 : : TestClass::TearDownTestCase, new TestFactoryImpl<TestClass>);
673 : :
674 : : // Next, recurses (at compile time) with the tail of the type list.
675 : : return TypeParameterizedTest<Fixture, TestSel,
676 : : typename Types::Tail>::Register(prefix,
677 : : code_location,
678 : : case_name,
679 : : test_names,
680 : : index + 1,
681 : : type_names);
682 : : }
683 : : };
684 : :
685 : : // The base case for the compile time recursion.
686 : : template <GTEST_TEMPLATE_ Fixture, class TestSel>
687 : : class TypeParameterizedTest<Fixture, TestSel, Types0> {
688 : : public:
689 : : static bool Register(const char* /*prefix*/, const CodeLocation&,
690 : : const char* /*case_name*/, const char* /*test_names*/,
691 : : int /*index*/,
692 : : const std::vector<std::string>& =
693 : : std::vector<std::string>() /*type_names*/) {
694 : : return true;
695 : : }
696 : : };
697 : :
698 : : // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
699 : : // registers *all combinations* of 'Tests' and 'Types' with Google
700 : : // Test. The return value is insignificant - we just need to return
701 : : // something such that we can call this function in a namespace scope.
702 : : template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
703 : : class TypeParameterizedTestCase {
704 : : public:
705 : : static bool Register(const char* prefix, CodeLocation code_location,
706 : : const TypedTestCasePState* state, const char* case_name,
707 : : const char* test_names,
708 : : const std::vector<std::string>& type_names =
709 : : GenerateNames<DefaultNameGenerator, Types>()) {
710 : : std::string test_name = StripTrailingSpaces(
711 : : GetPrefixUntilComma(test_names));
712 : : if (!state->TestExists(test_name)) {
713 : : fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
714 : : case_name, test_name.c_str(),
715 : : FormatFileLocation(code_location.file.c_str(),
716 : : code_location.line).c_str());
717 : : fflush(stderr);
718 : : posix::Abort();
719 : : }
720 : : const CodeLocation& test_location = state->GetCodeLocation(test_name);
721 : :
722 : : typedef typename Tests::Head Head;
723 : :
724 : : // First, register the first test in 'Test' for each type in 'Types'.
725 : : TypeParameterizedTest<Fixture, Head, Types>::Register(
726 : : prefix, test_location, case_name, test_names, 0, type_names);
727 : :
728 : : // Next, recurses (at compile time) with the tail of the test list.
729 : : return TypeParameterizedTestCase<Fixture, typename Tests::Tail,
730 : : Types>::Register(prefix, code_location,
731 : : state, case_name,
732 : : SkipComma(test_names),
733 : : type_names);
734 : : }
735 : : };
736 : :
737 : : // The base case for the compile time recursion.
738 : : template <GTEST_TEMPLATE_ Fixture, typename Types>
739 : : class TypeParameterizedTestCase<Fixture, Templates0, Types> {
740 : : public:
741 : : static bool Register(const char* /*prefix*/, const CodeLocation&,
742 : : const TypedTestCasePState* /*state*/,
743 : : const char* /*case_name*/, const char* /*test_names*/,
744 : : const std::vector<std::string>& =
745 : : std::vector<std::string>() /*type_names*/) {
746 : : return true;
747 : : }
748 : : };
749 : :
750 : : #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
751 : :
752 : : // Returns the current OS stack trace as an std::string.
753 : : //
754 : : // The maximum number of stack frames to be included is specified by
755 : : // the gtest_stack_trace_depth flag. The skip_count parameter
756 : : // specifies the number of top frames to be skipped, which doesn't
757 : : // count against the number of frames to be included.
758 : : //
759 : : // For example, if Foo() calls Bar(), which in turn calls
760 : : // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
761 : : // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
762 : : GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
763 : : UnitTest* unit_test, int skip_count);
764 : :
765 : : // Helpers for suppressing warnings on unreachable code or constant
766 : : // condition.
767 : :
768 : : // Always returns true.
769 : : GTEST_API_ bool AlwaysTrue();
770 : :
771 : : // Always returns false.
772 : : inline bool AlwaysFalse() { return !AlwaysTrue(); }
773 : :
774 : : // Helper for suppressing false warning from Clang on a const char*
775 : : // variable declared in a conditional expression always being NULL in
776 : : // the else branch.
777 : : struct GTEST_API_ ConstCharPtr {
778 : : ConstCharPtr(const char* str) : value(str) {}
779 : : operator bool() const { return true; }
780 : : const char* value;
781 : : };
782 : :
783 : : // A simple Linear Congruential Generator for generating random
784 : : // numbers with a uniform distribution. Unlike rand() and srand(), it
785 : : // doesn't use global state (and therefore can't interfere with user
786 : : // code). Unlike rand_r(), it's portable. An LCG isn't very random,
787 : : // but it's good enough for our purposes.
788 : : class GTEST_API_ Random {
789 : : public:
790 : : static const UInt32 kMaxRange = 1u << 31;
791 : :
792 : : explicit Random(UInt32 seed) : state_(seed) {}
793 : :
794 : : void Reseed(UInt32 seed) { state_ = seed; }
795 : :
796 : : // Generates a random number from [0, range). Crashes if 'range' is
797 : : // 0 or greater than kMaxRange.
798 : : UInt32 Generate(UInt32 range);
799 : :
800 : : private:
801 : : UInt32 state_;
802 : : GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
803 : : };
804 : :
805 : : // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
806 : : // compiler error iff T1 and T2 are different types.
807 : : template <typename T1, typename T2>
808 : : struct CompileAssertTypesEqual;
809 : :
810 : : template <typename T>
811 : : struct CompileAssertTypesEqual<T, T> {
812 : : };
813 : :
814 : : // Removes the reference from a type if it is a reference type,
815 : : // otherwise leaves it unchanged. This is the same as
816 : : // tr1::remove_reference, which is not widely available yet.
817 : : template <typename T>
818 : : struct RemoveReference { typedef T type; }; // NOLINT
819 : : template <typename T>
820 : : struct RemoveReference<T&> { typedef T type; }; // NOLINT
821 : :
822 : : // A handy wrapper around RemoveReference that works when the argument
823 : : // T depends on template parameters.
824 : : #define GTEST_REMOVE_REFERENCE_(T) \
825 : : typename ::testing::internal::RemoveReference<T>::type
826 : :
827 : : // Removes const from a type if it is a const type, otherwise leaves
828 : : // it unchanged. This is the same as tr1::remove_const, which is not
829 : : // widely available yet.
830 : : template <typename T>
831 : : struct RemoveConst { typedef T type; }; // NOLINT
832 : : template <typename T>
833 : : struct RemoveConst<const T> { typedef T type; }; // NOLINT
834 : :
835 : : // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
836 : : // definition to fail to remove the const in 'const int[3]' and 'const
837 : : // char[3][4]'. The following specialization works around the bug.
838 : : template <typename T, size_t N>
839 : : struct RemoveConst<const T[N]> {
840 : : typedef typename RemoveConst<T>::type type[N];
841 : : };
842 : :
843 : : #if defined(_MSC_VER) && _MSC_VER < 1400
844 : : // This is the only specialization that allows VC++ 7.1 to remove const in
845 : : // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
846 : : // and thus needs to be conditionally compiled.
847 : : template <typename T, size_t N>
848 : : struct RemoveConst<T[N]> {
849 : : typedef typename RemoveConst<T>::type type[N];
850 : : };
851 : : #endif
852 : :
853 : : // A handy wrapper around RemoveConst that works when the argument
854 : : // T depends on template parameters.
855 : : #define GTEST_REMOVE_CONST_(T) \
856 : : typename ::testing::internal::RemoveConst<T>::type
857 : :
858 : : // Turns const U&, U&, const U, and U all into U.
859 : : #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
860 : : GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
861 : :
862 : : // ImplicitlyConvertible<From, To>::value is a compile-time bool
863 : : // constant that's true iff type From can be implicitly converted to
864 : : // type To.
865 : : template <typename From, typename To>
866 : : class ImplicitlyConvertible {
867 : : private:
868 : : // We need the following helper functions only for their types.
869 : : // They have no implementations.
870 : :
871 : : // MakeFrom() is an expression whose type is From. We cannot simply
872 : : // use From(), as the type From may not have a public default
873 : : // constructor.
874 : : static typename AddReference<From>::type MakeFrom();
875 : :
876 : : // These two functions are overloaded. Given an expression
877 : : // Helper(x), the compiler will pick the first version if x can be
878 : : // implicitly converted to type To; otherwise it will pick the
879 : : // second version.
880 : : //
881 : : // The first version returns a value of size 1, and the second
882 : : // version returns a value of size 2. Therefore, by checking the
883 : : // size of Helper(x), which can be done at compile time, we can tell
884 : : // which version of Helper() is used, and hence whether x can be
885 : : // implicitly converted to type To.
886 : : static char Helper(To);
887 : : static char (&Helper(...))[2]; // NOLINT
888 : :
889 : : // We have to put the 'public' section after the 'private' section,
890 : : // or MSVC refuses to compile the code.
891 : : public:
892 : : #if defined(__BORLANDC__)
893 : : // C++Builder cannot use member overload resolution during template
894 : : // instantiation. The simplest workaround is to use its C++0x type traits
895 : : // functions (C++Builder 2009 and above only).
896 : : static const bool value = __is_convertible(From, To);
897 : : #else
898 : : // MSVC warns about implicitly converting from double to int for
899 : : // possible loss of data, so we need to temporarily disable the
900 : : // warning.
901 : : GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
902 : : static const bool value =
903 : : sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
904 : : GTEST_DISABLE_MSC_WARNINGS_POP_()
905 : : #endif // __BORLANDC__
906 : : };
907 : : template <typename From, typename To>
908 : : const bool ImplicitlyConvertible<From, To>::value;
909 : :
910 : : // IsAProtocolMessage<T>::value is a compile-time bool constant that's
911 : : // true iff T is type ProtocolMessage, proto2::Message, or a subclass
912 : : // of those.
913 : : template <typename T>
914 : : struct IsAProtocolMessage
915 : : : public bool_constant<
916 : : ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
917 : : ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
918 : : };
919 : :
920 : : // When the compiler sees expression IsContainerTest<C>(0), if C is an
921 : : // STL-style container class, the first overload of IsContainerTest
922 : : // will be viable (since both C::iterator* and C::const_iterator* are
923 : : // valid types and NULL can be implicitly converted to them). It will
924 : : // be picked over the second overload as 'int' is a perfect match for
925 : : // the type of argument 0. If C::iterator or C::const_iterator is not
926 : : // a valid type, the first overload is not viable, and the second
927 : : // overload will be picked. Therefore, we can determine whether C is
928 : : // a container class by checking the type of IsContainerTest<C>(0).
929 : : // The value of the expression is insignificant.
930 : : //
931 : : // In C++11 mode we check the existence of a const_iterator and that an
932 : : // iterator is properly implemented for the container.
933 : : //
934 : : // For pre-C++11 that we look for both C::iterator and C::const_iterator.
935 : : // The reason is that C++ injects the name of a class as a member of the
936 : : // class itself (e.g. you can refer to class iterator as either
937 : : // 'iterator' or 'iterator::iterator'). If we look for C::iterator
938 : : // only, for example, we would mistakenly think that a class named
939 : : // iterator is an STL container.
940 : : //
941 : : // Also note that the simpler approach of overloading
942 : : // IsContainerTest(typename C::const_iterator*) and
943 : : // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
944 : : typedef int IsContainer;
945 : : #if GTEST_LANG_CXX11
946 : : template <class C,
947 : : class Iterator = decltype(::std::declval<const C&>().begin()),
948 : : class = decltype(::std::declval<const C&>().end()),
949 : : class = decltype(++::std::declval<Iterator&>()),
950 : : class = decltype(*::std::declval<Iterator>()),
951 : : class = typename C::const_iterator>
952 : : IsContainer IsContainerTest(int /* dummy */) {
953 : : return 0;
954 : : }
955 : : #else
956 : : template <class C>
957 : : IsContainer IsContainerTest(int /* dummy */,
958 : : typename C::iterator* /* it */ = NULL,
959 : : typename C::const_iterator* /* const_it */ = NULL) {
960 : : return 0;
961 : : }
962 : : #endif // GTEST_LANG_CXX11
963 : :
964 : : typedef char IsNotContainer;
965 : : template <class C>
966 : : IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
967 : :
968 : : // Trait to detect whether a type T is a hash table.
969 : : // The heuristic used is that the type contains an inner type `hasher` and does
970 : : // not contain an inner type `reverse_iterator`.
971 : : // If the container is iterable in reverse, then order might actually matter.
972 : : template <typename T>
973 : : struct IsHashTable {
974 : : private:
975 : : template <typename U>
976 : : static char test(typename U::hasher*, typename U::reverse_iterator*);
977 : : template <typename U>
978 : : static int test(typename U::hasher*, ...);
979 : : template <typename U>
980 : : static char test(...);
981 : :
982 : : public:
983 : : static const bool value = sizeof(test<T>(0, 0)) == sizeof(int);
984 : : };
985 : :
986 : : template <typename T>
987 : : const bool IsHashTable<T>::value;
988 : :
989 : : template<typename T>
990 : : struct VoidT {
991 : : typedef void value_type;
992 : : };
993 : :
994 : : template <typename T, typename = void>
995 : : struct HasValueType : false_type {};
996 : : template <typename T>
997 : : struct HasValueType<T, VoidT<typename T::value_type> > : true_type {
998 : : };
999 : :
1000 : : template <typename C,
1001 : : bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer),
1002 : : bool = HasValueType<C>::value>
1003 : : struct IsRecursiveContainerImpl;
1004 : :
1005 : : template <typename C, bool HV>
1006 : : struct IsRecursiveContainerImpl<C, false, HV> : public false_type {};
1007 : :
1008 : : // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
1009 : : // obey the same inconsistencies as the IsContainerTest, namely check if
1010 : : // something is a container is relying on only const_iterator in C++11 and
1011 : : // is relying on both const_iterator and iterator otherwise
1012 : : template <typename C>
1013 : : struct IsRecursiveContainerImpl<C, true, false> : public false_type {};
1014 : :
1015 : : template <typename C>
1016 : : struct IsRecursiveContainerImpl<C, true, true> {
1017 : : #if GTEST_LANG_CXX11
1018 : : typedef typename IteratorTraits<typename C::const_iterator>::value_type
1019 : : value_type;
1020 : : #else
1021 : : typedef typename IteratorTraits<typename C::iterator>::value_type value_type;
1022 : : #endif
1023 : : typedef is_same<value_type, C> type;
1024 : : };
1025 : :
1026 : : // IsRecursiveContainer<Type> is a unary compile-time predicate that
1027 : : // evaluates whether C is a recursive container type. A recursive container
1028 : : // type is a container type whose value_type is equal to the container type
1029 : : // itself. An example for a recursive container type is
1030 : : // boost::filesystem::path, whose iterator has a value_type that is equal to
1031 : : // boost::filesystem::path.
1032 : : template <typename C>
1033 : : struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1034 : :
1035 : : // EnableIf<condition>::type is void when 'Cond' is true, and
1036 : : // undefined when 'Cond' is false. To use SFINAE to make a function
1037 : : // overload only apply when a particular expression is true, add
1038 : : // "typename EnableIf<expression>::type* = 0" as the last parameter.
1039 : : template<bool> struct EnableIf;
1040 : : template<> struct EnableIf<true> { typedef void type; }; // NOLINT
1041 : :
1042 : : // Utilities for native arrays.
1043 : :
1044 : : // ArrayEq() compares two k-dimensional native arrays using the
1045 : : // elements' operator==, where k can be any integer >= 0. When k is
1046 : : // 0, ArrayEq() degenerates into comparing a single pair of values.
1047 : :
1048 : : template <typename T, typename U>
1049 : : bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1050 : :
1051 : : // This generic version is used when k is 0.
1052 : : template <typename T, typename U>
1053 : : inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1054 : :
1055 : : // This overload is used when k >= 1.
1056 : : template <typename T, typename U, size_t N>
1057 : : inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1058 : : return internal::ArrayEq(lhs, N, rhs);
1059 : : }
1060 : :
1061 : : // This helper reduces code bloat. If we instead put its logic inside
1062 : : // the previous ArrayEq() function, arrays with different sizes would
1063 : : // lead to different copies of the template code.
1064 : : template <typename T, typename U>
1065 : : bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1066 : : for (size_t i = 0; i != size; i++) {
1067 : : if (!internal::ArrayEq(lhs[i], rhs[i]))
1068 : : return false;
1069 : : }
1070 : : return true;
1071 : : }
1072 : :
1073 : : // Finds the first element in the iterator range [begin, end) that
1074 : : // equals elem. Element may be a native array type itself.
1075 : : template <typename Iter, typename Element>
1076 : : Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1077 : : for (Iter it = begin; it != end; ++it) {
1078 : : if (internal::ArrayEq(*it, elem))
1079 : : return it;
1080 : : }
1081 : : return end;
1082 : : }
1083 : :
1084 : : // CopyArray() copies a k-dimensional native array using the elements'
1085 : : // operator=, where k can be any integer >= 0. When k is 0,
1086 : : // CopyArray() degenerates into copying a single value.
1087 : :
1088 : : template <typename T, typename U>
1089 : : void CopyArray(const T* from, size_t size, U* to);
1090 : :
1091 : : // This generic version is used when k is 0.
1092 : : template <typename T, typename U>
1093 : : inline void CopyArray(const T& from, U* to) { *to = from; }
1094 : :
1095 : : // This overload is used when k >= 1.
1096 : : template <typename T, typename U, size_t N>
1097 : : inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1098 : : internal::CopyArray(from, N, *to);
1099 : : }
1100 : :
1101 : : // This helper reduces code bloat. If we instead put its logic inside
1102 : : // the previous CopyArray() function, arrays with different sizes
1103 : : // would lead to different copies of the template code.
1104 : : template <typename T, typename U>
1105 : : void CopyArray(const T* from, size_t size, U* to) {
1106 : : for (size_t i = 0; i != size; i++) {
1107 : : internal::CopyArray(from[i], to + i);
1108 : : }
1109 : : }
1110 : :
1111 : : // The relation between an NativeArray object (see below) and the
1112 : : // native array it represents.
1113 : : // We use 2 different structs to allow non-copyable types to be used, as long
1114 : : // as RelationToSourceReference() is passed.
1115 : : struct RelationToSourceReference {};
1116 : : struct RelationToSourceCopy {};
1117 : :
1118 : : // Adapts a native array to a read-only STL-style container. Instead
1119 : : // of the complete STL container concept, this adaptor only implements
1120 : : // members useful for Google Mock's container matchers. New members
1121 : : // should be added as needed. To simplify the implementation, we only
1122 : : // support Element being a raw type (i.e. having no top-level const or
1123 : : // reference modifier). It's the client's responsibility to satisfy
1124 : : // this requirement. Element can be an array type itself (hence
1125 : : // multi-dimensional arrays are supported).
1126 : : template <typename Element>
1127 : : class NativeArray {
1128 : : public:
1129 : : // STL-style container typedefs.
1130 : : typedef Element value_type;
1131 : : typedef Element* iterator;
1132 : : typedef const Element* const_iterator;
1133 : :
1134 : : // Constructs from a native array. References the source.
1135 : : NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1136 : : InitRef(array, count);
1137 : : }
1138 : :
1139 : : // Constructs from a native array. Copies the source.
1140 : : NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1141 : : InitCopy(array, count);
1142 : : }
1143 : :
1144 : : // Copy constructor.
1145 : : NativeArray(const NativeArray& rhs) {
1146 : : (this->*rhs.clone_)(rhs.array_, rhs.size_);
1147 : : }
1148 : :
1149 : : ~NativeArray() {
1150 : : if (clone_ != &NativeArray::InitRef)
1151 : : delete[] array_;
1152 : : }
1153 : :
1154 : : // STL-style container methods.
1155 : : size_t size() const { return size_; }
1156 : : const_iterator begin() const { return array_; }
1157 : : const_iterator end() const { return array_ + size_; }
1158 : : bool operator==(const NativeArray& rhs) const {
1159 : : return size() == rhs.size() &&
1160 : : ArrayEq(begin(), size(), rhs.begin());
1161 : : }
1162 : :
1163 : : private:
1164 : : enum {
1165 : : kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1166 : : Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value
1167 : : };
1168 : :
1169 : : // Initializes this object with a copy of the input.
1170 : : void InitCopy(const Element* array, size_t a_size) {
1171 : : Element* const copy = new Element[a_size];
1172 : : CopyArray(array, a_size, copy);
1173 : : array_ = copy;
1174 : : size_ = a_size;
1175 : : clone_ = &NativeArray::InitCopy;
1176 : : }
1177 : :
1178 : : // Initializes this object with a reference of the input.
1179 : : void InitRef(const Element* array, size_t a_size) {
1180 : : array_ = array;
1181 : : size_ = a_size;
1182 : : clone_ = &NativeArray::InitRef;
1183 : : }
1184 : :
1185 : : const Element* array_;
1186 : : size_t size_;
1187 : : void (NativeArray::*clone_)(const Element*, size_t);
1188 : :
1189 : : GTEST_DISALLOW_ASSIGN_(NativeArray);
1190 : : };
1191 : :
1192 : : } // namespace internal
1193 : : } // namespace testing
1194 : :
1195 : : #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1196 : : ::testing::internal::AssertHelper(result_type, file, line, message) \
1197 : : = ::testing::Message()
1198 : :
1199 : : #define GTEST_MESSAGE_(message, result_type) \
1200 : : GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1201 : :
1202 : : #define GTEST_FATAL_FAILURE_(message) \
1203 : : return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1204 : :
1205 : : #define GTEST_NONFATAL_FAILURE_(message) \
1206 : : GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1207 : :
1208 : : #define GTEST_SUCCESS_(message) \
1209 : : GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1210 : :
1211 : : // Suppress MSVC warning 4702 (unreachable code) for the code following
1212 : : // statement if it returns or throws (or doesn't return or throw in some
1213 : : // situations).
1214 : : #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1215 : : if (::testing::internal::AlwaysTrue()) { statement; }
1216 : :
1217 : : #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1218 : : GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1219 : : if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1220 : : bool gtest_caught_expected = false; \
1221 : : try { \
1222 : : GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1223 : : } \
1224 : : catch (expected_exception const&) { \
1225 : : gtest_caught_expected = true; \
1226 : : } \
1227 : : catch (...) { \
1228 : : gtest_msg.value = \
1229 : : "Expected: " #statement " throws an exception of type " \
1230 : : #expected_exception ".\n Actual: it throws a different type."; \
1231 : : goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1232 : : } \
1233 : : if (!gtest_caught_expected) { \
1234 : : gtest_msg.value = \
1235 : : "Expected: " #statement " throws an exception of type " \
1236 : : #expected_exception ".\n Actual: it throws nothing."; \
1237 : : goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1238 : : } \
1239 : : } else \
1240 : : GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1241 : : fail(gtest_msg.value)
1242 : :
1243 : : #define GTEST_TEST_NO_THROW_(statement, fail) \
1244 : : GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1245 : : if (::testing::internal::AlwaysTrue()) { \
1246 : : try { \
1247 : : GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1248 : : } \
1249 : : catch (...) { \
1250 : : goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1251 : : } \
1252 : : } else \
1253 : : GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1254 : : fail("Expected: " #statement " doesn't throw an exception.\n" \
1255 : : " Actual: it throws.")
1256 : :
1257 : : #define GTEST_TEST_ANY_THROW_(statement, fail) \
1258 : : GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1259 : : if (::testing::internal::AlwaysTrue()) { \
1260 : : bool gtest_caught_any = false; \
1261 : : try { \
1262 : : GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1263 : : } \
1264 : : catch (...) { \
1265 : : gtest_caught_any = true; \
1266 : : } \
1267 : : if (!gtest_caught_any) { \
1268 : : goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1269 : : } \
1270 : : } else \
1271 : : GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1272 : : fail("Expected: " #statement " throws an exception.\n" \
1273 : : " Actual: it doesn't.")
1274 : :
1275 : :
1276 : : // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1277 : : // either a boolean expression or an AssertionResult. text is a textual
1278 : : // represenation of expression as it was passed into the EXPECT_TRUE.
1279 : : #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1280 : : GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1281 : : if (const ::testing::AssertionResult gtest_ar_ = \
1282 : : ::testing::AssertionResult(expression)) \
1283 : : ; \
1284 : : else \
1285 : : fail(::testing::internal::GetBoolAssertionFailureMessage(\
1286 : : gtest_ar_, text, #actual, #expected).c_str())
1287 : :
1288 : : #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1289 : : GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1290 : : if (::testing::internal::AlwaysTrue()) { \
1291 : : ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1292 : : GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1293 : : if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1294 : : goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1295 : : } \
1296 : : } else \
1297 : : GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1298 : : fail("Expected: " #statement " doesn't generate new fatal " \
1299 : : "failures in the current thread.\n" \
1300 : : " Actual: it does.")
1301 : :
1302 : : // Expands to the name of the class that implements the given test.
1303 : : #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1304 : : test_case_name##_##test_name##_Test
1305 : :
1306 : : // Helper macro for defining tests.
1307 : : #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1308 : : class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1309 : : public:\
1310 : : GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1311 : : private:\
1312 : : virtual void TestBody();\
1313 : : static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1314 : : GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1315 : : GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1316 : : };\
1317 : : \
1318 : : ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1319 : : ::test_info_ =\
1320 : : ::testing::internal::MakeAndRegisterTestInfo(\
1321 : : #test_case_name, #test_name, NULL, NULL, \
1322 : : ::testing::internal::CodeLocation(__FILE__, __LINE__), \
1323 : : (parent_id), \
1324 : : parent_class::SetUpTestCase, \
1325 : : parent_class::TearDownTestCase, \
1326 : : new ::testing::internal::TestFactoryImpl<\
1327 : : GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1328 : : void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1329 : :
1330 : : #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|