|
|
import requests
|
|
|
from bs4 import BeautifulSoup
|
|
|
import re
|
|
|
import time
|
|
|
import random
|
|
|
import jieba
|
|
|
import wordcloud
|
|
|
import matplotlib.pyplot as plt
|
|
|
import pandas as pd
|
|
|
from pandas import ExcelWriter
|
|
|
from collections import Counter
|
|
|
headers = {
|
|
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0',
|
|
|
|
|
|
}
|
|
|
keywords = [
|
|
|
'AI', '人工智能', '机器学习', '深度学习', '神经网络', '自动化',
|
|
|
'算法', '数据科学', '智能算法', '自然语言处理', '计算机视觉',
|
|
|
'智能机器人', '智能系统', '人工智能技术', 'AI技术', 'AI应用',
|
|
|
'智能设备', '智能分析', 'AI模型', '大数据', '预测分析',
|
|
|
'智能预测', '智慧城市', '智能制造', '机器视觉', '自动驾驶',
|
|
|
'智能传感器', '智能控制', '智能推荐', '计算机科学', '人工智能应用',
|
|
|
'人工智能发展', 'AI伦理', '人工智能安全', '智能算法应用', '数据分析',
|
|
|
'智能化', '智能化技术', '算法优化', '机器智能', '情感计算','ai'
|
|
|
]
|
|
|
|
|
|
videosnumber = 0
|
|
|
# 获取搜索结果页面的内容
|
|
|
def get_search_page(search_url):
|
|
|
response = requests.get(search_url, headers=headers)
|
|
|
response.raise_for_status() # 确保请求成功
|
|
|
return response.text
|
|
|
|
|
|
# 提取页面中所有视频的链接
|
|
|
def extract_video_links(page_content):
|
|
|
soup = BeautifulSoup(page_content, 'html.parser')
|
|
|
video_links = []
|
|
|
for a_tag in soup.select(".video-list.row div.bili-video-card > div > a"):
|
|
|
link = a_tag.get('href')
|
|
|
video_links.append(link)
|
|
|
|
|
|
return video_links
|
|
|
|
|
|
# 提取视频的BV号
|
|
|
def extract__BV(video_urls):
|
|
|
links=[]
|
|
|
for video_url in video_urls:
|
|
|
video_id_match = re.search(r'/video/([^/]+)', video_url)
|
|
|
if video_id_match:
|
|
|
links.append(video_id_match.group(1))
|
|
|
return links
|
|
|
|
|
|
# 将视频BV号转为CID
|
|
|
def get_cid_from_bv(bv_ids):
|
|
|
cids=[]
|
|
|
for bv_id in bv_ids:
|
|
|
# 视频详情 API 地址
|
|
|
video_url = f'https://api.bilibili.com/x/web-interface/view?bvid={bv_id}'
|
|
|
|
|
|
# 发送请求
|
|
|
response = requests.get(video_url, headers=headers)
|
|
|
response.raise_for_status()
|
|
|
data = response.json()
|
|
|
# 提取 cid
|
|
|
if data.get('code') == 0:
|
|
|
cid = data.get('data', {}).get('cid')
|
|
|
cids.append(cid)
|
|
|
return cids
|
|
|
|
|
|
#获取弹幕
|
|
|
def get_danmu(id):
|
|
|
global videosnumber
|
|
|
video_url = f'https://api.bilibili.com/x/v1/dm/list.so?oid={id}'
|
|
|
response = requests.get(video_url, headers=headers) #要爬取的网址
|
|
|
response.encoding='utf-8' #编码方式
|
|
|
html = response.text
|
|
|
soup = BeautifulSoup(html) #使用beautifulsoup库快速查找我们想要的信息
|
|
|
all_txt = soup.findAll("d") #寻找到所有包含d的行
|
|
|
txt=[all_txts.attrs ["p"]for all_txts in all_txt] #寻找到所有包含d的行中属性为p的值,这里边包含了弹幕的虚拟id等
|
|
|
txtss=[all_txts.string for all_txts in all_txt] #寻找到所有包含d的行中的字符串数据,即弹幕内容
|
|
|
txtsss=[txts.replace(' ','') for txts in txtss] #将字符串中的空格消除掉
|
|
|
videosnumber = videosnumber +1
|
|
|
bulletnumber = len(txtsss)
|
|
|
print( f"这是第{videosnumber}视频, 获取到{bulletnumber}弹幕")
|
|
|
time.sleep(random.randint(0,2)+random.random())
|
|
|
return(txtsss) ###打印便可看见一条条弹幕的属性和内容了。
|
|
|
|
|
|
#翻页
|
|
|
def page(url,num):
|
|
|
num=num+1
|
|
|
url=f'https://search.bilibili.com/video?keyword=2024巴黎奥运会&page={num}'
|
|
|
return url
|
|
|
|
|
|
#处理弹幕
|
|
|
def chuli(alltxt):
|
|
|
danmustr=''.join(i for i in alltxt) #将所有弹幕拼接在一起
|
|
|
words=list(jieba.cut(danmustr)) ###利用jieba库将弹幕按词进行切分
|
|
|
words=[i for i in words if len(i)>1] ###挑出长度大于1的词语(为去除诸如?,哈,啊等字符)
|
|
|
wc=wordcloud.WordCloud(height=1000,width=1000,font_path='simsun.ttc')#利用wordcloud库定义词云图片的信息
|
|
|
wc.generate(' '.join(words)) ##生成图片
|
|
|
print(wc)
|
|
|
plt.imshow(wc)
|
|
|
plt.show()
|
|
|
|
|
|
def sort(txt, keywords):
|
|
|
|
|
|
comment_counter = Counter()
|
|
|
for line in txt:
|
|
|
if any(word in keywords for word in jieba.cut(line)):
|
|
|
comment_counter[line] += 1
|
|
|
|
|
|
return comment_counter
|
|
|
|
|
|
comment_counter = sort(alltxt, keywords)
|
|
|
top_comments = comment_counter.most_common(8) #输出排名前八
|
|
|
|
|
|
#存入excel
|
|
|
def save_to_excel(danmu_data, filename='danmu_data.xlsx'):
|
|
|
# 创建 DataFrame
|
|
|
df = pd.DataFrame(danmu_data, columns=['弹幕'])
|
|
|
# 保存到 Excel
|
|
|
with ExcelWriter(filename, engine='openpyxl') as writer:
|
|
|
df.to_excel(writer, index=False)
|
|
|
|
|
|
# 主函数
|
|
|
def main(kword,mubiao):
|
|
|
search_url= f'https://search.bilibili.com/video?keyword={kword}'
|
|
|
for i in range(100):
|
|
|
search_url=page(search_url,i)
|
|
|
page_content = get_search_page(search_url)
|
|
|
video_links = extract_video_links(page_content)
|
|
|
bvs = extract__BV(video_links)
|
|
|
alltxt=[]
|
|
|
cids = []
|
|
|
cids = get_cid_from_bv(bvs)
|
|
|
for id in cids:
|
|
|
if(videosnumber>=mubiao): break
|
|
|
txt = get_danmu(id)
|
|
|
alltxt=alltxt + txt
|
|
|
if(videosnumber>=mubiao): break
|
|
|
return(alltxt)
|
|
|
|
|
|
# 示例搜索页 URL(需要替换为实际的搜索页 URL)
|
|
|
keword = "2024巴黎奥运会" #视频关键词
|
|
|
flag = 300 #你要爬的视频数量
|
|
|
|
|
|
alltxt=main(keword,flag)
|
|
|
chuli(alltxt)
|
|
|
save_to_excel(alltxt)
|
|
|
|
|
|
# 输出排名前8的AI相关弹幕
|
|
|
for comment, count in top_comments:
|
|
|
print(f'弹幕: {comment}, 数量: {count}') |