You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

467 lines
11 KiB

#include "easypr/core/feature.h"
#include "easypr/core/core_func.h"
#include "thirdparty/LBP/lbp.hpp"
namespace easypr {
Mat getHistogram(Mat in) {
const int VERTICAL = 0;
const int HORIZONTAL = 1;
// Histogram features
Mat vhist = ProjectedHistogram(in, VERTICAL);
Mat hhist = ProjectedHistogram(in, HORIZONTAL);
// Last 10 is the number of moments components
int numCols = vhist.cols + hhist.cols;
Mat out = Mat::zeros(1, numCols, CV_32F);
int j = 0;
for (int i = 0; i < vhist.cols; i++) {
out.at<float>(j) = vhist.at<float>(i);
j++;
}
for (int i = 0; i < hhist.cols; i++) {
out.at<float>(j) = hhist.at<float>(i);
j++;
}
return out;
}
void getHistogramFeatures(const Mat& image, Mat& features) {
Mat grayImage;
cvtColor(image, grayImage, CV_RGB2GRAY);
//grayImage = histeq(grayImage);
Mat img_threshold;
threshold(grayImage, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
//Mat img_threshold = grayImage.clone();
//spatial_ostu(img_threshold, 8, 2, getPlateType(image, false));
features = getHistogram(img_threshold);
}
// compute color histom
void getColorFeatures(const Mat& src, Mat& features) {
Mat src_hsv;
//grayImage = histeq(grayImage);
cvtColor(src, src_hsv, CV_BGR2HSV);
int channels = src_hsv.channels();
int nRows = src_hsv.rows;
// consider multi channel image
int nCols = src_hsv.cols * channels;
if (src_hsv.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
const int sz = 180;
int h[sz] = { 0 };
uchar* p;
for (int i = 0; i < nRows; ++i) {
p = src_hsv.ptr<uchar>(i);
for (int j = 0; j < nCols; j += 3) {
int H = int(p[j]); // 0-180
if (H > sz - 1) H = sz - 1;
if (H < 0) H = 0;
h[H]++;
}
}
Mat mhist = Mat::zeros(1, sz, CV_32F);
for (int j = 0; j < sz; j++) {
mhist.at<float>(j) = (float)h[j];
}
// Normalize histogram
double min, max;
minMaxLoc(mhist, &min, &max);
if (max > 0)
mhist.convertTo(mhist, -1, 1.0f / max, 0);
features = mhist;
}
void getHistomPlusColoFeatures(const Mat& image, Mat& features) {
// TODO
Mat feature1, feature2;
getHistogramFeatures(image, feature1);
getColorFeatures(image, feature2);
hconcat(feature1.reshape(1, 1), feature2.reshape(1, 1), features);
}
void getSIFTFeatures(const Mat& image, Mat& features) {
// TODO
}
//HOG Features
void getHOGFeatures(const Mat& image, Mat& features) {
//HOG descripter
HOGDescriptor hog(cvSize(128, 64), cvSize(16, 16), cvSize(8, 8), cvSize(8, 8), 3); //these parameters work well
std::vector<float> descriptor;
// resize input image to (128,64) for compute
Size dsize = Size(128,64);
Mat trainImg = Mat(dsize, CV_32S);
resize(image, trainImg, dsize);
// compute descripter
hog.compute(trainImg, descriptor, Size(8, 8));
// copy the result
Mat mat_featrue(descriptor);
mat_featrue.copyTo(features);
}
void getHSVHistFeatures(const Mat& image, Mat& features) {
// TODO
}
//! LBP feature
void getLBPFeatures(const Mat& image, Mat& features) {
Mat grayImage;
cvtColor(image, grayImage, CV_RGB2GRAY);
Mat lbpimage;
lbpimage = libfacerec::olbp(grayImage);
Mat lbp_hist = libfacerec::spatial_histogram(lbpimage, 32, 4, 4);
features = lbp_hist;
}
Mat charFeatures(Mat in, int sizeData) {
const int VERTICAL = 0;
const int HORIZONTAL = 1;
// cut the cetner, will afect 5% perices.
Rect _rect = GetCenterRect(in);
Mat tmpIn = CutTheRect(in, _rect);
//Mat tmpIn = in.clone();
// Low data feature
Mat lowData;
resize(tmpIn, lowData, Size(sizeData, sizeData));
// Histogram features
Mat vhist = ProjectedHistogram(lowData, VERTICAL);
Mat hhist = ProjectedHistogram(lowData, HORIZONTAL);
// Last 10 is the number of moments components
int numCols = vhist.cols + hhist.cols + lowData.cols * lowData.cols;
Mat out = Mat::zeros(1, numCols, CV_32F);
// Asign values to
int j = 0;
for (int i = 0; i < vhist.cols; i++) {
out.at<float>(j) = vhist.at<float>(i);
j++;
}
for (int i = 0; i < hhist.cols; i++) {
out.at<float>(j) = hhist.at<float>(i);
j++;
}
for (int x = 0; x < lowData.cols; x++) {
for (int y = 0; y < lowData.rows; y++) {
out.at<float>(j) += (float)lowData.at <unsigned char>(x, y);
j++;
}
}
//std::cout << out << std::endl;
return out;
}
Mat charFeatures2(Mat in, int sizeData) {
const int VERTICAL = 0;
const int HORIZONTAL = 1;
// cut the cetner, will afect 5% perices.
Rect _rect = GetCenterRect(in);
Mat tmpIn = CutTheRect(in, _rect);
//Mat tmpIn = in.clone();
// Low data feature
Mat lowData;
resize(tmpIn, lowData, Size(sizeData, sizeData));
// Histogram features
Mat vhist = ProjectedHistogram(lowData, VERTICAL);
Mat hhist = ProjectedHistogram(lowData, HORIZONTAL);
// Last 10 is the number of moments components
int numCols = vhist.cols + hhist.cols + lowData.cols * lowData.cols;
Mat out = Mat::zeros(1, numCols, CV_32F);
int j = 0;
for (int i = 0; i < vhist.cols; i++) {
out.at<float>(j) = vhist.at<float>(i);
j++;
}
for (int i = 0; i < hhist.cols; i++) {
out.at<float>(j) = hhist.at<float>(i);
j++;
}
for (int x = 0; x < lowData.cols; x++) {
for (int y = 0; y < lowData.rows; y++) {
out.at<float>(j) += (float)lowData.at <unsigned char>(x, y);
j++;
}
}
//std::cout << out << std::endl;
return out;
}
Mat charProjectFeatures(const Mat& in, int sizeData) {
const int VERTICAL = 0;
const int HORIZONTAL = 1;
SHOW_IMAGE(in, 0);
// cut the cetner, will afect 5% perices.
Mat lowData;
resize(in, lowData, Size(sizeData, sizeData));
SHOW_IMAGE(lowData, 0);
// Histogram features
Mat vhist = ProjectedHistogram(lowData, VERTICAL);
Mat hhist = ProjectedHistogram(lowData, HORIZONTAL);
// Last 10 is the number of moments components
int numCols = vhist.cols + hhist.cols;
Mat out = Mat::zeros(1, numCols, CV_32F);
int j = 0;
for (int i = 0; i < vhist.cols; i++) {
out.at<float>(j) = vhist.at<float>(i);
j++;
}
for (int i = 0; i < hhist.cols; i++) {
out.at<float>(j) = hhist.at<float>(i);
j++;
}
//std::cout << out << std::endl;
return out;
}
void getGrayCharFeatures(const Mat& grayChar, Mat& features) {
// TODO: check channnels == 1
SHOW_IMAGE(grayChar, 0);
SHOW_IMAGE(255 - grayChar, 0);
// resize to uniform size, like 20x32
bool useResize = false;
bool useConvert = true;
bool useMean = true;
bool useLBP = false;
Mat char_mat;
if (useResize) {
char_mat.create(kGrayCharHeight, kGrayCharWidth, CV_8UC1);
resize(grayChar, char_mat, char_mat.size(), 0, 0, INTER_LINEAR);
} else {
char_mat = grayChar;
}
SHOW_IMAGE(char_mat, 0);
// convert to float
Mat float_img;
if (useConvert) {
float scale = 1.f / 255;
char_mat.convertTo(float_img, CV_32FC1, scale, 0);
} else {
float_img = char_mat;
}
SHOW_IMAGE(float_img, 0);
// cut from mean, it can be optional
Mat mean_img;
if (useMean) {
float_img -= mean(float_img);
mean_img = float_img;
} else {
mean_img = float_img;
}
SHOW_IMAGE(mean_img, 0);
// use lbp to get features, it can be changed to other
Mat feautreImg;
if (useLBP) {
Mat lbpimage = libfacerec::olbp(char_mat);
SHOW_IMAGE(lbpimage, 0);
feautreImg = libfacerec::spatial_histogram(lbpimage, kCharLBPPatterns, kCharLBPGridX, kCharLBPGridY);
} else {
feautreImg = mean_img.reshape(1, 1);
}
// return back
features = feautreImg;
}
void getGrayPlusProject(const Mat& grayChar, Mat& features)
{
// TODO: check channnels == 1
SHOW_IMAGE(grayChar, 0);
SHOW_IMAGE(255 - grayChar, 0);
// resize to uniform size, like 20x32
bool useResize = false;
bool useConvert = true;
bool useMean = true;
bool useLBP = false;
Mat char_mat;
if (useResize) {
char_mat.create(kGrayCharHeight, kGrayCharWidth, CV_8UC1);
resize(grayChar, char_mat, char_mat.size(), 0, 0, INTER_LINEAR);
}
else {
char_mat = grayChar;
}
SHOW_IMAGE(char_mat, 0);
// convert to float
Mat float_img;
if (useConvert) {
float scale = 1.f / 255;
char_mat.convertTo(float_img, CV_32FC1, scale, 0);
}
else {
float_img = char_mat;
}
SHOW_IMAGE(float_img, 0);
// cut from mean, it can be optional
Mat mean_img;
if (useMean) {
float_img -= mean(float_img);
mean_img = float_img;
}
else {
mean_img = float_img;
}
SHOW_IMAGE(mean_img, 0);
// use lbp to get features, it can be changed to other
Mat feautreImg;
if (useLBP) {
Mat lbpimage = libfacerec::olbp(char_mat);
SHOW_IMAGE(lbpimage, 0);
feautreImg = libfacerec::spatial_histogram(lbpimage, kCharLBPPatterns, kCharLBPGridX, kCharLBPGridY);
}
else {
feautreImg = mean_img.reshape(1, 1);
}
SHOW_IMAGE(grayChar, 0);
Mat binaryChar;
threshold(grayChar, binaryChar, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
SHOW_IMAGE(binaryChar, 0);
Mat projectFeature = charProjectFeatures(binaryChar, 32);
hconcat(feautreImg.reshape(1, 1), projectFeature.reshape(1, 1), features);
}
void getGrayPlusLBP(const Mat& grayChar, Mat& features)
{
// TODO: check channnels == 1
SHOW_IMAGE(grayChar, 0);
SHOW_IMAGE(255 - grayChar, 0);
// resize to uniform size, like 20x32
bool useResize = false;
bool useConvert = true;
bool useMean = true;
bool useLBP = true;
Mat char_mat;
if (useResize) {
char_mat.create(kGrayCharHeight, kGrayCharWidth, CV_8UC1);
resize(grayChar, char_mat, char_mat.size(), 0, 0, INTER_LINEAR);
}
else {
char_mat = grayChar;
}
SHOW_IMAGE(char_mat, 0);
// convert to float
Mat float_img;
if (useConvert) {
float scale = 1.f / 255;
char_mat.convertTo(float_img, CV_32FC1, scale, 0);
}
else {
float_img = char_mat;
}
SHOW_IMAGE(float_img, 0);
// cut from mean, it can be optional
Mat mean_img;
if (useMean) {
float_img -= mean(float_img);
mean_img = float_img;
}
else {
mean_img = float_img;
}
SHOW_IMAGE(mean_img, 0);
// use lbp to get features, it can be changed to other
Mat originImage = mean_img.clone();
Mat lbpimage = libfacerec::olbp(mean_img);
SHOW_IMAGE(lbpimage, 0);
lbpimage = libfacerec::spatial_histogram(lbpimage, kCharLBPPatterns, kCharLBPGridX, kCharLBPGridY);
// 32x20 + 16x16
hconcat(mean_img.reshape(1, 1), lbpimage.reshape(1, 1), features);
}
void getLBPplusHistFeatures(const Mat& image, Mat& features) {
Mat grayImage;
cvtColor(image, grayImage, CV_RGB2GRAY);
Mat lbpimage;
lbpimage = libfacerec::olbp(grayImage);
Mat lbp_hist = libfacerec::spatial_histogram(lbpimage, 64, 8, 4);
//features = lbp_hist.reshape(1, 1);
Mat greyImage;
cvtColor(image, greyImage, CV_RGB2GRAY);
//grayImage = histeq(grayImage);
Mat img_threshold;
threshold(greyImage, img_threshold, 0, 255,
CV_THRESH_OTSU + CV_THRESH_BINARY);
Mat histomFeatures = getHistogram(img_threshold);
hconcat(lbp_hist.reshape(1, 1), histomFeatures.reshape(1, 1), features);
//std::cout << features << std::endl;
//features = histomFeatures;
}
}