You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1000 lines
27 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include "easypr/core/plate_locate.h"
#include "easypr/core/core_func.h"
#include "easypr/util/util.h"
#include "easypr/core/params.h"
using namespace std;
namespace easypr {
const float DEFAULT_ERROR = 0.9f; // 0.6
const float DEFAULT_ASPECT = 3.75f; // 3.75
CPlateLocate::CPlateLocate() {
m_GaussianBlurSize = DEFAULT_GAUSSIANBLUR_SIZE;
m_MorphSizeWidth = DEFAULT_MORPH_SIZE_WIDTH;
m_MorphSizeHeight = DEFAULT_MORPH_SIZE_HEIGHT;
m_error = DEFAULT_ERROR;
m_aspect = DEFAULT_ASPECT;
m_verifyMin = DEFAULT_VERIFY_MIN;
m_verifyMax = DEFAULT_VERIFY_MAX;
m_angle = DEFAULT_ANGLE;
m_debug = DEFAULT_DEBUG;
}
void CPlateLocate::setLifemode(bool param) {
if (param) {
setGaussianBlurSize(5);
setMorphSizeWidth(10);
setMorphSizeHeight(3);
setVerifyError(0.75);
setVerifyAspect(4.0);
setVerifyMin(1);
setVerifyMax(200);
} else {
setGaussianBlurSize(DEFAULT_GAUSSIANBLUR_SIZE);
setMorphSizeWidth(DEFAULT_MORPH_SIZE_WIDTH);
setMorphSizeHeight(DEFAULT_MORPH_SIZE_HEIGHT);
setVerifyError(DEFAULT_ERROR);
setVerifyAspect(DEFAULT_ASPECT);
setVerifyMin(DEFAULT_VERIFY_MIN);
setVerifyMax(DEFAULT_VERIFY_MAX);
}
}
bool CPlateLocate::verifySizes(RotatedRect mr) {
float error = m_error;
// Spain car plate size: 52x11 aspect 4,7272
// China car plate size: 440mm*140mmaspect 3.142857
// Real car plate size: 136 * 32, aspect 4
float aspect = m_aspect;
// Set a min and max area. All other patchs are discarded
// int min= 1*aspect*1; // minimum area
// int max= 2000*aspect*2000; // maximum area
int min = 34 * 8 * m_verifyMin; // minimum area
int max = 34 * 8 * m_verifyMax; // maximum area
// Get only patchs that match to a respect ratio.
float rmin = aspect - aspect * error;
float rmax = aspect + aspect * error;
float area = mr.size.height * mr.size.width;
float r = (float) mr.size.width / (float) mr.size.height;
if (r < 1) r = (float) mr.size.height / (float) mr.size.width;
// cout << "area:" << area << endl;
// cout << "r:" << r << endl;
if ((area < min || area > max) || (r < rmin || r > rmax))
return false;
else
return true;
}
//! mser search method
int CPlateLocate::mserSearch(const Mat &src, vector<Mat> &out,
vector<vector<CPlate>>& out_plateVec, bool usePlateMser, vector<vector<RotatedRect>>& out_plateRRect,
int img_index, bool showDebug) {
vector<Mat> match_grey;
vector<CPlate> plateVec_blue;
plateVec_blue.reserve(16);
vector<RotatedRect> plateRRect_blue;
plateRRect_blue.reserve(16);
vector<CPlate> plateVec_yellow;
plateVec_yellow.reserve(16);
vector<RotatedRect> plateRRect_yellow;
plateRRect_yellow.reserve(16);
mserCharMatch(src, match_grey, plateVec_blue, plateVec_yellow, usePlateMser, plateRRect_blue, plateRRect_yellow, img_index, showDebug);
out_plateVec.push_back(plateVec_blue);
out_plateVec.push_back(plateVec_yellow);
out_plateRRect.push_back(plateRRect_blue);
out_plateRRect.push_back(plateRRect_yellow);
out = match_grey;
return 0;
}
int CPlateLocate::colorSearch(const Mat &src, const Color r, Mat &out,
vector<RotatedRect> &outRects) {
Mat match_grey;
// width is important to the final results;
const int color_morph_width = 10;
const int color_morph_height = 2;
colorMatch(src, match_grey, r, false);
SHOW_IMAGE(match_grey, 0);
Mat src_threshold;
threshold(match_grey, src_threshold, 0, 255,
CV_THRESH_OTSU + CV_THRESH_BINARY);
Mat element = getStructuringElement(
MORPH_RECT, Size(color_morph_width, color_morph_height));
morphologyEx(src_threshold, src_threshold, MORPH_CLOSE, element);
//if (m_debug) {
// utils::imwrite("resources/image/tmp/color.jpg", src_threshold);
//}
src_threshold.copyTo(out);
vector<vector<Point>> contours;
findContours(src_threshold,
contours, // a vector of contours
CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_NONE); // all pixels of each contours
vector<vector<Point>>::iterator itc = contours.begin();
while (itc != contours.end()) {
RotatedRect mr = minAreaRect(Mat(*itc));
if (!verifySizes(mr))
itc = contours.erase(itc);
else {
++itc;
outRects.push_back(mr);
}
}
return 0;
}
int CPlateLocate::sobelFrtSearch(const Mat &src,
vector<Rect_<float>> &outRects) {
Mat src_threshold;
sobelOper(src, src_threshold, m_GaussianBlurSize, m_MorphSizeWidth,
m_MorphSizeHeight);
vector<vector<Point>> contours;
findContours(src_threshold,
contours, // a vector of contours
CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_NONE); // all pixels of each contours
vector<vector<Point>>::iterator itc = contours.begin();
vector<RotatedRect> first_rects;
while (itc != contours.end()) {
RotatedRect mr = minAreaRect(Mat(*itc));
if (verifySizes(mr)) {
first_rects.push_back(mr);
float area = mr.size.height * mr.size.width;
float r = (float) mr.size.width / (float) mr.size.height;
if (r < 1) r = (float) mr.size.height / (float) mr.size.width;
}
++itc;
}
for (size_t i = 0; i < first_rects.size(); i++) {
RotatedRect roi_rect = first_rects[i];
Rect_<float> safeBoundRect;
if (!calcSafeRect(roi_rect, src, safeBoundRect)) continue;
outRects.push_back(safeBoundRect);
}
return 0;
}
int CPlateLocate::sobelSecSearchPart(Mat &bound, Point2f refpoint,
vector<RotatedRect> &outRects) {
Mat bound_threshold;
sobelOperT(bound, bound_threshold, 3, 6, 2);
Mat tempBoundThread = bound_threshold.clone();
clearLiuDingOnly(tempBoundThread);
int posLeft = 0, posRight = 0;
if (bFindLeftRightBound(tempBoundThread, posLeft, posRight)) {
// find left and right bounds to repair
if (posRight != 0 && posLeft != 0 && posLeft < posRight) {
int posY = int(bound_threshold.rows * 0.5);
for (int i = posLeft + (int) (bound_threshold.rows * 0.1);
i < posRight - 4; i++) {
bound_threshold.data[posY * bound_threshold.cols + i] = 255;
}
}
utils::imwrite("resources/image/tmp/repaireimg1.jpg", bound_threshold);
// remove the left and right boundaries
for (int i = 0; i < bound_threshold.rows; i++) {
bound_threshold.data[i * bound_threshold.cols + posLeft] = 0;
bound_threshold.data[i * bound_threshold.cols + posRight] = 0;
}
utils::imwrite("resources/image/tmp/repaireimg2.jpg", bound_threshold);
}
vector<vector<Point>> contours;
findContours(bound_threshold,
contours, // a vector of contours
CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_NONE); // all pixels of each contours
vector<vector<Point>>::iterator itc = contours.begin();
vector<RotatedRect> second_rects;
while (itc != contours.end()) {
RotatedRect mr = minAreaRect(Mat(*itc));
second_rects.push_back(mr);
++itc;
}
for (size_t i = 0; i < second_rects.size(); i++) {
RotatedRect roi = second_rects[i];
if (verifySizes(roi)) {
Point2f refcenter = roi.center + refpoint;
Size2f size = roi.size;
float angle = roi.angle;
RotatedRect refroi(refcenter, size, angle);
outRects.push_back(refroi);
}
}
return 0;
}
int CPlateLocate::sobelSecSearch(Mat &bound, Point2f refpoint,
vector<RotatedRect> &outRects) {
Mat bound_threshold;
sobelOper(bound, bound_threshold, 3, 10, 3);
utils::imwrite("resources/image/tmp/sobelSecSearch.jpg", bound_threshold);
vector<vector<Point>> contours;
findContours(bound_threshold,
contours, // a vector of contours
CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_NONE); // all pixels of each contours
vector<vector<Point>>::iterator itc = contours.begin();
vector<RotatedRect> second_rects;
while (itc != contours.end()) {
RotatedRect mr = minAreaRect(Mat(*itc));
second_rects.push_back(mr);
++itc;
}
for (size_t i = 0; i < second_rects.size(); i++) {
RotatedRect roi = second_rects[i];
if (verifySizes(roi)) {
Point2f refcenter = roi.center + refpoint;
Size2f size = roi.size;
float angle = roi.angle;
RotatedRect refroi(refcenter, size, angle);
outRects.push_back(refroi);
}
}
return 0;
}
int CPlateLocate::sobelOper(const Mat &in, Mat &out, int blurSize, int morphW,
int morphH) {
Mat mat_blur;
mat_blur = in.clone();
GaussianBlur(in, mat_blur, Size(blurSize, blurSize), 0, 0, BORDER_DEFAULT);
Mat mat_gray;
if (mat_blur.channels() == 3)
cvtColor(mat_blur, mat_gray, CV_RGB2GRAY);
else
mat_gray = mat_blur;
int scale = SOBEL_SCALE;
int delta = SOBEL_DELTA;
int ddepth = SOBEL_DDEPTH;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
Sobel(mat_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
Mat grad;
addWeighted(abs_grad_x, SOBEL_X_WEIGHT, 0, 0, 0, grad);
Mat mat_threshold;
double otsu_thresh_val =
threshold(grad, mat_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
Mat element = getStructuringElement(MORPH_RECT, Size(morphW, morphH));
morphologyEx(mat_threshold, mat_threshold, MORPH_CLOSE, element);
out = mat_threshold;
return 0;
}
void deleteNotArea(Mat &inmat, Color color = UNKNOWN) {
Mat input_grey;
cvtColor(inmat, input_grey, CV_BGR2GRAY);
int w = inmat.cols;
int h = inmat.rows;
Mat tmpMat = inmat(Rect_<double>(w * 0.15, h * 0.1, w * 0.7, h * 0.7));
Color plateType;
if (UNKNOWN == color) {
plateType = getPlateType(tmpMat, true);
}
else {
plateType = color;
}
Mat img_threshold;
if (BLUE == plateType) {
img_threshold = input_grey.clone();
Mat tmp = input_grey(Rect_<double>(w * 0.15, h * 0.15, w * 0.7, h * 0.7));
int threadHoldV = ThresholdOtsu(tmp);
threshold(input_grey, img_threshold, threadHoldV, 255, CV_THRESH_BINARY);
// threshold(input_grey, img_threshold, 5, 255, CV_THRESH_OTSU +
// CV_THRESH_BINARY);
utils::imwrite("resources/image/tmp/inputgray2.jpg", img_threshold);
} else if (YELLOW == plateType) {
img_threshold = input_grey.clone();
Mat tmp = input_grey(Rect_<double>(w * 0.1, h * 0.1, w * 0.8, h * 0.8));
int threadHoldV = ThresholdOtsu(tmp);
threshold(input_grey, img_threshold, threadHoldV, 255,
CV_THRESH_BINARY_INV);
utils::imwrite("resources/image/tmp/inputgray2.jpg", img_threshold);
// threshold(input_grey, img_threshold, 10, 255, CV_THRESH_OTSU +
// CV_THRESH_BINARY_INV);
} else
threshold(input_grey, img_threshold, 10, 255,
CV_THRESH_OTSU + CV_THRESH_BINARY);
//img_threshold = input_grey.clone();
//spatial_ostu(img_threshold, 8, 2, plateType);
int posLeft = 0;
int posRight = 0;
int top = 0;
int bottom = img_threshold.rows - 1;
clearLiuDing(img_threshold, top, bottom);
if (0) {
imshow("inmat", inmat);
waitKey(0);
destroyWindow("inmat");
}
if (bFindLeftRightBound1(img_threshold, posLeft, posRight)) {
inmat = inmat(Rect(posLeft, top, w - posLeft, bottom - top));
if (0) {
imshow("inmat", inmat);
waitKey(0);
destroyWindow("inmat");
}
}
}
int CPlateLocate::deskew(const Mat &src, const Mat &src_b,
vector<RotatedRect> &inRects,
vector<CPlate> &outPlates, bool useDeteleArea, Color color) {
Mat mat_debug;
src.copyTo(mat_debug);
for (size_t i = 0; i < inRects.size(); i++) {
RotatedRect roi_rect = inRects[i];
float r = (float) roi_rect.size.width / (float) roi_rect.size.height;
float roi_angle = roi_rect.angle;
Size roi_rect_size = roi_rect.size;
if (r < 1) {
roi_angle = 90 + roi_angle;
swap(roi_rect_size.width, roi_rect_size.height);
}
if (m_debug) {
Point2f rect_points[4];
roi_rect.points(rect_points);
for (int j = 0; j < 4; j++)
line(mat_debug, rect_points[j], rect_points[(j + 1) % 4],
Scalar(0, 255, 255), 1, 8);
}
// changed
// rotation = 90 - abs(roi_angle);
// rotation < m_angel;
// m_angle=60
if (roi_angle - m_angle < 0 && roi_angle + m_angle > 0) {
Rect_<float> safeBoundRect;
bool isFormRect = calcSafeRect(roi_rect, src, safeBoundRect);
if (!isFormRect) continue;
Mat bound_mat = src(safeBoundRect);
Mat bound_mat_b = src_b(safeBoundRect);
if (0) {
imshow("bound_mat_b", bound_mat_b);
waitKey(0);
destroyWindow("bound_mat_b");
}
Point2f roi_ref_center = roi_rect.center - safeBoundRect.tl();
Mat deskew_mat;
if ((roi_angle - 5 < 0 && roi_angle + 5 > 0) || 90.0 == roi_angle ||
-90.0 == roi_angle) {
deskew_mat = bound_mat;
} else {
Mat rotated_mat;
Mat rotated_mat_b;
if (!rotation(bound_mat, rotated_mat, roi_rect_size, roi_ref_center, roi_angle))
continue;
if (!rotation(bound_mat_b, rotated_mat_b, roi_rect_size, roi_ref_center, roi_angle))
continue;
// we need affine for rotatioed image
double roi_slope = 0;
// imshow("1roated_mat",rotated_mat);
// imshow("rotated_mat_b",rotated_mat_b);
if (isdeflection(rotated_mat_b, roi_angle, roi_slope)) {
affine(rotated_mat, deskew_mat, roi_slope);
} else
deskew_mat = rotated_mat;
}
Mat plate_mat;
plate_mat.create(HEIGHT, WIDTH, TYPE);
// haitungaga addaffect 25% to full recognition.
if (useDeteleArea)
deleteNotArea(deskew_mat, color);
if (deskew_mat.cols * 1.0 / deskew_mat.rows > 2.3 && deskew_mat.cols * 1.0 / deskew_mat.rows < 6) {
if (deskew_mat.cols >= WIDTH || deskew_mat.rows >= HEIGHT)
resize(deskew_mat, plate_mat, plate_mat.size(), 0, 0, INTER_AREA);
else
resize(deskew_mat, plate_mat, plate_mat.size(), 0, 0, INTER_CUBIC);
CPlate plate;
plate.setPlatePos(roi_rect);
plate.setPlateMat(plate_mat);
if (color != UNKNOWN) plate.setPlateColor(color);
outPlates.push_back(plate);
}
}
}
return 0;
}
bool CPlateLocate::rotation(Mat &in, Mat &out, const Size rect_size,
const Point2f center, const double angle) {
if (0) {
imshow("in", in);
waitKey(0);
destroyWindow("in");
}
Mat in_large;
in_large.create(int(in.rows * 1.5), int(in.cols * 1.5), in.type());
float x = in_large.cols / 2 - center.x > 0 ? in_large.cols / 2 - center.x : 0;
float y = in_large.rows / 2 - center.y > 0 ? in_large.rows / 2 - center.y : 0;
float width = x + in.cols < in_large.cols ? in.cols : in_large.cols - x;
float height = y + in.rows < in_large.rows ? in.rows : in_large.rows - y;
/*assert(width == in.cols);
assert(height == in.rows);*/
if (width != in.cols || height != in.rows) return false;
Mat imageRoi = in_large(Rect_<float>(x, y, width, height));
addWeighted(imageRoi, 0, in, 1, 0, imageRoi);
Point2f center_diff(in.cols / 2.f, in.rows / 2.f);
Point2f new_center(in_large.cols / 2.f, in_large.rows / 2.f);
Mat rot_mat = getRotationMatrix2D(new_center, angle, 1);
/*imshow("in_copy", in_large);
waitKey(0);*/
Mat mat_rotated;
warpAffine(in_large, mat_rotated, rot_mat, Size(in_large.cols, in_large.rows),
CV_INTER_CUBIC);
/*imshow("mat_rotated", mat_rotated);
waitKey(0);*/
Mat img_crop;
getRectSubPix(mat_rotated, Size(rect_size.width, rect_size.height),
new_center, img_crop);
out = img_crop;
if (0) {
imshow("out", out);
waitKey(0);
destroyWindow("out");
}
/*imshow("img_crop", img_crop);
waitKey(0);*/
return true;
}
bool CPlateLocate::isdeflection(const Mat &in, const double angle,
double &slope) { /*imshow("in",in);
waitKey(0);*/
if (0) {
imshow("in", in);
waitKey(0);
destroyWindow("in");
}
int nRows = in.rows;
int nCols = in.cols;
assert(in.channels() == 1);
int comp_index[3];
int len[3];
comp_index[0] = nRows / 4;
comp_index[1] = nRows / 4 * 2;
comp_index[2] = nRows / 4 * 3;
const uchar* p;
for (int i = 0; i < 3; i++) {
int index = comp_index[i];
p = in.ptr<uchar>(index);
int j = 0;
int value = 0;
while (0 == value && j < nCols) value = int(p[j++]);
len[i] = j;
}
// cout << "len[0]:" << len[0] << endl;
// cout << "len[1]:" << len[1] << endl;
// cout << "len[2]:" << len[2] << endl;
// len[0]/len[1]/len[2] are used to calc the slope
double maxlen = max(len[2], len[0]);
double minlen = min(len[2], len[0]);
double difflen = abs(len[2] - len[0]);
double PI = 3.14159265;
double g = tan(angle * PI / 180.0);
if (maxlen - len[1] > nCols / 32 || len[1] - minlen > nCols / 32) {
double slope_can_1 =
double(len[2] - len[0]) / double(comp_index[1]);
double slope_can_2 = double(len[1] - len[0]) / double(comp_index[0]);
double slope_can_3 = double(len[2] - len[1]) / double(comp_index[0]);
// cout<<"angle:"<<angle<<endl;
// cout<<"g:"<<g<<endl;
// cout << "slope_can_1:" << slope_can_1 << endl;
// cout << "slope_can_2:" << slope_can_2 << endl;
// cout << "slope_can_3:" << slope_can_3 << endl;
// if(g>=0)
slope = abs(slope_can_1 - g) <= abs(slope_can_2 - g) ? slope_can_1
: slope_can_2;
// cout << "slope:" << slope << endl;
return true;
} else {
slope = 0;
}
return false;
}
void CPlateLocate::affine(const Mat &in, Mat &out, const double slope) {
// imshow("in", in);
// waitKey(0);
Point2f dstTri[3];
Point2f plTri[3];
float height = (float) in.rows;
float width = (float) in.cols;
float xiff = (float) abs(slope) * height;
if (slope > 0) {
// right, new position is xiff/2
plTri[0] = Point2f(0, 0);
plTri[1] = Point2f(width - xiff - 1, 0);
plTri[2] = Point2f(0 + xiff, height - 1);
dstTri[0] = Point2f(xiff / 2, 0);
dstTri[1] = Point2f(width - 1 - xiff / 2, 0);
dstTri[2] = Point2f(xiff / 2, height - 1);
} else {
// left, new position is -xiff/2
plTri[0] = Point2f(0 + xiff, 0);
plTri[1] = Point2f(width - 1, 0);
plTri[2] = Point2f(0, height - 1);
dstTri[0] = Point2f(xiff / 2, 0);
dstTri[1] = Point2f(width - 1 - xiff + xiff / 2, 0);
dstTri[2] = Point2f(xiff / 2, height - 1);
}
Mat warp_mat = getAffineTransform(plTri, dstTri);
Mat affine_mat;
affine_mat.create((int) height, (int) width, TYPE);
if (in.rows > HEIGHT || in.cols > WIDTH)
warpAffine(in, affine_mat, warp_mat, affine_mat.size(),
CV_INTER_AREA);
else
warpAffine(in, affine_mat, warp_mat, affine_mat.size(), CV_INTER_CUBIC);
out = affine_mat;
}
int CPlateLocate::plateColorLocate(Mat src, vector<CPlate> &candPlates,
int index) {
vector<RotatedRect> rects_color_blue;
rects_color_blue.reserve(64);
vector<RotatedRect> rects_color_yellow;
rects_color_yellow.reserve(64);
vector<CPlate> plates_blue;
plates_blue.reserve(64);
vector<CPlate> plates_yellow;
plates_yellow.reserve(64);
Mat src_clone = src.clone();
Mat src_b_blue;
Mat src_b_yellow;
#pragma omp parallel sections
{
#pragma omp section
{
colorSearch(src, BLUE, src_b_blue, rects_color_blue);
deskew(src, src_b_blue, rects_color_blue, plates_blue, true, BLUE);
}
#pragma omp section
{
colorSearch(src_clone, YELLOW, src_b_yellow, rects_color_yellow);
deskew(src_clone, src_b_yellow, rects_color_yellow, plates_yellow, true, YELLOW);
}
}
candPlates.insert(candPlates.end(), plates_blue.begin(), plates_blue.end());
candPlates.insert(candPlates.end(), plates_yellow.begin(), plates_yellow.end());
return 0;
}
//! MSER plate locate
int CPlateLocate::plateMserLocate(Mat src, vector<CPlate> &candPlates, int img_index) {
std::vector<Mat> channelImages;
std::vector<Color> flags;
flags.push_back(BLUE);
flags.push_back(YELLOW);
bool usePlateMser = false;
int scale_size = 1000;
//int scale_size = CParams::instance()->getParam1i();
double scale_ratio = 1;
// only conside blue plate
if (1) {
Mat grayImage;
cvtColor(src, grayImage, COLOR_BGR2GRAY);
channelImages.push_back(grayImage);
}
for (size_t i = 0; i < channelImages.size(); ++i) {
vector<vector<RotatedRect>> plateRRectsVec;
vector<vector<CPlate>> platesVec;
vector<Mat> src_b_vec;
Mat channelImage = channelImages.at(i);
Mat image = scaleImage(channelImage, Size(scale_size, scale_size), scale_ratio);
// vector<RotatedRect> rects;
mserSearch(image, src_b_vec, platesVec, usePlateMser, plateRRectsVec, img_index, false);
for (size_t j = 0; j < flags.size(); j++) {
vector<CPlate>& plates = platesVec.at(j);
Mat& src_b = src_b_vec.at(j);
Color color = flags.at(j);
vector<RotatedRect> rects_mser;
rects_mser.reserve(64);
std::vector<CPlate> deskewPlate;
deskewPlate.reserve(64);
std::vector<CPlate> mserPlate;
mserPlate.reserve(64);
// deskew for rotation and slope image
for (auto plate : plates) {
RotatedRect rrect = plate.getPlatePos();
RotatedRect scaleRect = scaleBackRRect(rrect, (float)scale_ratio);
plate.setPlatePos(scaleRect);
plate.setPlateColor(color);
rects_mser.push_back(scaleRect);
mserPlate.push_back(plate);
}
Mat resize_src_b;
resize(src_b, resize_src_b, Size(channelImage.cols, channelImage.rows));
deskew(src, resize_src_b, rects_mser, deskewPlate, false, color);
for (auto dplate : deskewPlate) {
RotatedRect drect = dplate.getPlatePos();
Mat dmat = dplate.getPlateMat();
for (auto splate : mserPlate) {
RotatedRect srect = splate.getPlatePos();
float iou = 0.f;
bool isSimilar = computeIOU(drect, srect, src.cols, src.rows, 0.95f, iou);
if (isSimilar) {
splate.setPlateMat(dmat);
candPlates.push_back(splate);
break;
}
}
}
}
}
if (0) {
imshow("src", src);
waitKey(0);
destroyWindow("src");
}
return 0;
}
int CPlateLocate::sobelOperT(const Mat &in, Mat &out, int blurSize, int morphW,
int morphH) {
Mat mat_blur;
mat_blur = in.clone();
GaussianBlur(in, mat_blur, Size(blurSize, blurSize), 0, 0, BORDER_DEFAULT);
Mat mat_gray;
if (mat_blur.channels() == 3)
cvtColor(mat_blur, mat_gray, CV_BGR2GRAY);
else
mat_gray = mat_blur;
utils::imwrite("resources/image/tmp/grayblure.jpg", mat_gray);
// equalizeHist(mat_gray, mat_gray);
int scale = SOBEL_SCALE;
int delta = SOBEL_DELTA;
int ddepth = SOBEL_DDEPTH;
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
Sobel(mat_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);
Mat grad;
addWeighted(abs_grad_x, 1, 0, 0, 0, grad);
utils::imwrite("resources/image/tmp/graygrad.jpg", grad);
Mat mat_threshold;
double otsu_thresh_val =
threshold(grad, mat_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
utils::imwrite("resources/image/tmp/grayBINARY.jpg", mat_threshold);
Mat element = getStructuringElement(MORPH_RECT, Size(morphW, morphH));
morphologyEx(mat_threshold, mat_threshold, MORPH_CLOSE, element);
utils::imwrite("resources/image/tmp/phologyEx.jpg", mat_threshold);
out = mat_threshold;
return 0;
}
int CPlateLocate::plateSobelLocate(Mat src, vector<CPlate> &candPlates,
int index) {
vector<RotatedRect> rects_sobel_all;
rects_sobel_all.reserve(256);
vector<CPlate> plates;
plates.reserve(32);
vector<Rect_<float>> bound_rects;
bound_rects.reserve(256);
sobelFrtSearch(src, bound_rects);
vector<Rect_<float>> bound_rects_part;
bound_rects_part.reserve(256);
// enlarge area
for (size_t i = 0; i < bound_rects.size(); i++) {
float fRatio = bound_rects[i].width * 1.0f / bound_rects[i].height;
if (fRatio < 3.0 && fRatio > 1.0 && bound_rects[i].height < 120) {
Rect_<float> itemRect = bound_rects[i];
itemRect.x = itemRect.x - itemRect.height * (4 - fRatio);
if (itemRect.x < 0) {
itemRect.x = 0;
}
itemRect.width = itemRect.width + itemRect.height * 2 * (4 - fRatio);
if (itemRect.width + itemRect.x >= src.cols) {
itemRect.width = src.cols - itemRect.x;
}
itemRect.y = itemRect.y - itemRect.height * 0.08f;
itemRect.height = itemRect.height * 1.16f;
bound_rects_part.push_back(itemRect);
}
}
// second processing to split one
#pragma omp parallel for
for (int i = 0; i < (int)bound_rects_part.size(); i++) {
Rect_<float> bound_rect = bound_rects_part[i];
Point2f refpoint(bound_rect.x, bound_rect.y);
float x = bound_rect.x > 0 ? bound_rect.x : 0;
float y = bound_rect.y > 0 ? bound_rect.y : 0;
float width =
x + bound_rect.width < src.cols ? bound_rect.width : src.cols - x;
float height =
y + bound_rect.height < src.rows ? bound_rect.height : src.rows - y;
Rect_<float> safe_bound_rect(x, y, width, height);
Mat bound_mat = src(safe_bound_rect);
vector<RotatedRect> rects_sobel;
rects_sobel.reserve(128);
sobelSecSearchPart(bound_mat, refpoint, rects_sobel);
#pragma omp critical
{
rects_sobel_all.insert(rects_sobel_all.end(), rects_sobel.begin(), rects_sobel.end());
}
}
#pragma omp parallel for
for (int i = 0; i < (int)bound_rects.size(); i++) {
Rect_<float> bound_rect = bound_rects[i];
Point2f refpoint(bound_rect.x, bound_rect.y);
float x = bound_rect.x > 0 ? bound_rect.x : 0;
float y = bound_rect.y > 0 ? bound_rect.y : 0;
float width =
x + bound_rect.width < src.cols ? bound_rect.width : src.cols - x;
float height =
y + bound_rect.height < src.rows ? bound_rect.height : src.rows - y;
Rect_<float> safe_bound_rect(x, y, width, height);
Mat bound_mat = src(safe_bound_rect);
vector<RotatedRect> rects_sobel;
rects_sobel.reserve(128);
sobelSecSearch(bound_mat, refpoint, rects_sobel);
#pragma omp critical
{
rects_sobel_all.insert(rects_sobel_all.end(), rects_sobel.begin(), rects_sobel.end());
}
}
Mat src_b;
sobelOper(src, src_b, 3, 10, 3);
deskew(src, src_b, rects_sobel_all, plates);
//for (size_t i = 0; i < plates.size(); i++)
// candPlates.push_back(plates[i]);
candPlates.insert(candPlates.end(), plates.begin(), plates.end());
return 0;
}
int CPlateLocate::plateLocate(Mat src, vector<Mat> &resultVec, int index) {
vector<CPlate> all_result_Plates;
plateColorLocate(src, all_result_Plates, index);
plateSobelLocate(src, all_result_Plates, index);
plateMserLocate(src, all_result_Plates, index);
for (size_t i = 0; i < all_result_Plates.size(); i++) {
CPlate plate = all_result_Plates[i];
resultVec.push_back(plate.getPlateMat());
}
return 0;
}
int CPlateLocate::plateLocate(Mat src, vector<CPlate> &resultVec, int index) {
vector<CPlate> all_result_Plates;
plateColorLocate(src, all_result_Plates, index);
plateSobelLocate(src, all_result_Plates, index);
plateMserLocate(src, all_result_Plates, index);
for (size_t i = 0; i < all_result_Plates.size(); i++) {
resultVec.push_back(all_result_Plates[i]);
}
return 0;
}
}