From 089a2ece4643506bf9d6c5174faa8565c39d96c1 Mon Sep 17 00:00:00 2001 From: px38ly72e <494532044@qq.com> Date: Fri, 15 Dec 2023 00:39:23 +0800 Subject: [PATCH] Update README.md --- README.md | 76 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 75 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 46adafd..3883199 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,76 @@ # FineTune - +!pip install paddlehub==1.8.1 -i https://pypi.tuna.tsinghua.edu.cn/simple +import paddlehub as hub +module = hub.Module(name="mobilenet_v2_imagenet") +!unzip -o /data/shixunfiles/26a2e3c3b2c50fe54e2fcab6e031a141_1607408726958.zip +from paddlehub.dataset.base_cv_dataset import BaseCVDataset +class DemoDataset(BaseCVDataset): + def __init__(self): + self.dataset_dir="car_datasets" + super(DemoDataset, self).__init__( + base_path=self.dataset_dir, + train_list_file="train_list.txt", + validate_list_file="validate_list.txt", + test_list_file="test_list.txt", + label_list_file="label_list.txt", + ) +dataset=DemoDataset() +data_reader=hub.reader.ImageClassificationReader( + image_width=module.get_expected_image_width(), + image_height=module.get_expected_image_height(), + images_mean=module.get_pretrained_images_mean(), + images_std=module.get_pretrained_images_std(), + dataset=dataset) +config = hub.RunConfig( + use_cuda=False, + num_epoch=10, + batch_size=32, + eval_interval=50, + strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) +input_dict, output_dict, program = module.context(trainable=True) +img = input_dict["image"] +feature_map = output_dict["feature_map"] +feed_list = [img.name] +task = hub.ImageClassifierTask( + data_reader=data_reader, + feed_list=feed_list, + feature=feature_map, + num_classes=dataset.num_labels, + config=config) +run_states = task.finetune_and_eval() +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd +from pandas import Series,DataFrame +%matplotlib inline +import os +dirs=os.listdir('car_datasets/test') +num=0 +for i in os.listdir('car_datasets/test'): + m='car_datasets/test/'+i + dirs[num]=m + num+=1 +s=0 +b=0 +a=os.listdir('car_datasets/test') +for i in a: + b+=len(os.listdir('car_datasets/test/'+i)) +data=[] +for i in range(b): + data.append('w') +for i in dirs: + for j in os.listdir(i): + n=i+'/'+j + data[s]=n + s+=1 +label_map = dataset.label_dict() +index = 0 +run_states = task.predict(data=data) +results = [run_state.run_results for run_state in run_states] +for batch_result in results: + batch_result = np.argmax(batch_result, axis=2)[0] + for result in batch_result: + index += 1 + result = label_map[result] + print("input %i is %s, and the predict result is ( %s )" % + (index, data[index - 1], result)) \ No newline at end of file