From dbc0c07bd4a293ca29a5a52d0f96cb85cc31a3f2 Mon Sep 17 00:00:00 2001 From: px3gvlpas <1822510835@qq.com> Date: Tue, 30 May 2023 21:51:14 +0800 Subject: [PATCH] ADD file via upload --- 20407118-晋玉洁-计科2001班.html | 15637 ++++++++++++++++++++++++ 1 file changed, 15637 insertions(+) create mode 100644 20407118-晋玉洁-计科2001班.html diff --git a/20407118-晋玉洁-计科2001班.html b/20407118-晋玉洁-计科2001班.html new file mode 100644 index 0000000..c37dd9e --- /dev/null +++ b/20407118-晋玉洁-计科2001班.html @@ -0,0 +1,15637 @@ + + +
+ + +total = 0
+factorial = 1
+for i in range(1, 21):
+ factorial *= i
+ total += factorial
+print("和:",total)
+和: 2561327494111820313 ++
s = [9, 7, 8, 3, 2, 1, 55, 6]
+
+# 元素个数
+
+element_count = len(s)
+
+print("元素个数为:", element_count)
+
+# 最大数
+
+max_num = max(s)
+
+print("最大数为:", max_num)
+
+# 最小数
+
+min_num = min(s)
+
+print("最小数为:", min_num)
+
+# 添加元素 10
+
+s.append(10)
+
+print("添加元素 10 后的列表为:", s)
+
+# 删除元素 55
+
+s.remove(55)
+
+print("删除元素 55 后的列表为:", s)
+元素个数为: 8 +最大数为: 55 +最小数为: 1 +添加元素 10 后的列表为: [9, 7, 8, 3, 2, 1, 55, 6, 10] +删除元素 55 后的列表为: [9, 7, 8, 3, 2, 1, 6, 10] ++
TTTTTx
+TTTTxx
+TTTxxx
+TTxxxx
+Txxxxx
+
+n = 5
+for i in range(n):
+ print("T" * (n - i - 1) + "x" * (i+1))
+TTTTx +TTTxx +TTxxx +Txxxx +xxxxx ++
# 定义加法函数
+def add(x, y):
+ return x + y
+
+# 定义减法函数
+def subtract(x, y):
+ return x - y
+
+# 定义乘法函数
+def multiply(x, y):
+ return x * y
+
+# 定义除法函数
+def divide(x, y):
+ return x / y
+
+# 打印菜单提示信息
+print("请选择要进行的计算:")
+print("1. 加法")
+print("2. 减法")
+print("3. 乘法")
+print("4. 除法")
+
+# 获取用户选择
+choice = input("请输入计算的序号(1/2/3/4):")
+
+# 获取用户输入的数字
+num1 = float(input("请输入第一个数字:"))
+num2 = float(input("请输入第二个数字:"))
+
+# 根据用户选择调用相应的函数进行计算
+if choice == '1':
+ result = add(num1, num2)
+elif choice == '2':
+ result = subtract(num1, num2)
+elif choice == '3':
+ result = multiply(num1, num2)
+elif choice == '4':
+ result = divide(num1, num2)
+else:
+ print("输入的计算序号不正确!")
+
+# 输出计算结果
+print("计算结果为:", result)
+请选择要进行的计算: +1. 加法 +2. 减法 +3. 乘法 +4. 除法 +请输入计算的序号(1/2/3/4):1 +请输入第一个数字:46 +请输入第二个数字:89 +计算结果为: 135.0 ++
class Student:
+ def __init__(self, name, age, course):
+ self.name = name
+ self.age = age
+ self.course = course
+
+ def get_name(self):
+ return str(self.name)
+
+ def get_age(self):
+ return int(self.age)
+
+ def get_course(self):
+ return int(max(self.course))
+
+st = Student('zhangming', 20, [69, 88, 100])
+
+print('学生姓名:', st.get_name())
+print('学生年龄:', st.get_age())
+print('最高分数:', st.get_course())
+学生姓名: zhangming +学生年龄: 20 +最高分数: 100 ++
| X | +Y | +X | +Y | +
|---|---|---|---|
| -3.00 | +4 | +0.15 | +255 | +
| -2.50 | +12 | +0.75 | +170 | +
| -1.75 | +50 | +1.25 | +100 | +
| -1.15 | +120 | +1.85 | +20 | +
| -0.50 | +205 | +2.45 | +14 | +
import matplotlib.pyplot as plt
+
+# 数据
+
+data = {
+
+'X': [-3.00, -2.50, -1.75, -1.15, -0.50, 0.15, 0.75, 1.25, 1.85, 2.45],
+
+'Y': [4, 12, 50, 120, 205, 255, 170, 100, 20, 14]
+
+}
+
+# 绘制柱状图
+
+plt.bar(data['X'], data['Y'], width=0.3, align='center')
+
+# 设置坐标轴标签和图标题
+
+plt.xlabel('X')
+
+plt.ylabel('Y')
+
+plt.title('条形图')
+
+# 显示图形
+
+plt.show()
+注:训练集:测试集=8:2,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果打印出各个回归的w和b系数即可。
+| 序号 | +X1 | +X2 | +X3 | +X4 | +Y | +
|---|---|---|---|---|---|
| 1 | +7 | +26 | +6 | +60 | +78.5 | +
| 2 | +1 | +29 | +15 | +52 | +74.3 | +
| 3 | +11 | +56 | +8 | +20 | +104.3 | +
| 4 | +11 | +31 | +8 | +47 | +87.6 | +
| 5 | +7 | +52 | +6 | +33 | +95.9 | +
| 6 | +11 | +55 | +9 | +22 | +109.2 | +
| 7 | +3 | +71 | +17 | +6 | +102.7 | +
| 8 | +1 | +31 | +22 | +44 | +72.5 | +
| 9 | +2 | +54 | +18 | +22 | +93.1 | +
| 10 | +21 | +47 | +4 | +26 | +115.9 | +
| 11 | +1 | +40 | +23 | +34 | +83.8 | +
| 12 | +11 | +66 | +9 | +12 | +113.3 | +
| 13 | +10 | +68 | +8 | +12 | +109.4 | +
import pandas as pd
+
+from sklearn.model_selection import train_test_split
+
+from sklearn.linear_model import LinearRegression, Ridge, Lasso
+
+# 创建数据
+
+data = [
+
+[7, 26, 6, 60, 78.5],
+
+[1, 29, 15, 52, 74.3],
+
+[11, 56, 8, 20, 104.3],
+
+[11, 31, 8, 47, 87.6],
+
+[7, 52, 6, 33, 95.9],
+
+[11, 55, 9, 22, 109.2],
+
+[3, 71, 17, 6, 102.7],
+
+[1, 31, 22, 44, 72.5],
+
+[2, 54, 18, 22, 93.1],
+
+[21, 47, 4, 26, 115.9],
+
+[1, 40, 23, 34, 83.8],
+
+[11, 66, 9, 12, 113.3],
+
+[10, 68, 8, 12, 109.4]
+
+]
+
+# 将数据转为 pandas DataFrame 格式,设置列名
+
+df = pd.DataFrame(data, columns=['X1', 'X2', 'X3', 'X4', 'Y'])
+
+# 分别提取特征变量 X 和标签 y
+
+X = df.iloc[:, :-1]
+
+y = df.iloc[:, -1]
+
+# 拆分数据集为训练集和测试集
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=18)
+
+# 创建线性回归模型,进行训练和预测,并输出系数和截距
+
+lr = LinearRegression().fit(X_train, y_train)
+
+y_pred_lr = lr.predict(X_test)
+
+print("线性回归模型:")
+
+print("w:", lr.coef_)
+
+print("b:", lr.intercept_)
+
+# 创建岭回归模型,进行训练和预测,并输出系数和截距
+
+ridge = Ridge(alpha=1.0).fit(X_train, y_train)
+
+y_pred_ridge = ridge.predict(X_test)
+
+print("岭回归模型:")
+
+print("w:", ridge.coef_)
+
+print("b:", ridge.intercept_)
+
+# 创建 Lasso 回归模型,进行训练和预测,并输出系数和截距
+
+lasso = Lasso(alpha=0.1).fit(X_train, y_train)
+
+y_pred_lasso = lasso.predict(X_test)
+
+print("Lasso 回归模型:")
+
+print("w:", lasso.coef_)
+
+print("b:", lasso.intercept_)
+线性回归模型: +w: [1.71864127 0.74786281 0.27383256 0.06792827] +b: 41.53342709367418 +岭回归模型: +w: [ 1.39106973 0.48205898 -0.02178167 -0.19036431] +b: 67.84739657575545 +Lasso 回归模型: +w: [ 1.41614847 0.50506628 0. -0.16799554] +b: 65.63758245931115 ++
注:训练集:测试集=1:1,随机种子采用你学号后两位,例如你学号后两位=01,则random_state=1,如果最后两位=34,则random_state=34。最终结果输出你预测结果、实际结果以及模型得分三项。
+| 序号 | +年龄 | +收入 | +是否为学生 | +信誉 | +购买计算机 | +
|---|---|---|---|---|---|
| 1 | +<=30 | +高 | +否 | +中 | +否 | +
| 2 | +<=30 | +高 | +否 | +优 | +否 | +
| 3 | +31-40 | +高 | +否 | +中 | +是 | +
| 4 | +>40 | +中 | +否 | +中 | +是 | +
| 5 | +>40 | +低 | +是 | +中 | +是 | +
| 6 | +>40 | +低 | +是 | +优 | +否 | +
| 7 | +31-40 | +低 | +是 | +优 | +是 | +
| 8 | +<=30 | +中 | +否 | +中 | +否 | +
| 9 | +<=30 | +低 | +是 | +中 | +是 | +
| 10 | +>40 | +中 | +是 | +中 | +是 | +
| 11 | +<=30 | +中 | +是 | +优 | +是 | +
| 12 | +31-40 | +中 | +否 | +优 | +是 | +
| 13 | +31-40 | +高 | +是 | +中 | +是 | +
| 14 | +>40 | +中 | +否 | +优 | +否 | +
import pandas as pd
+
+from sklearn.model_selection import train_test_split
+
+from sklearn.naive_bayes import CategoricalNB
+
+# 创建数据集
+
+data = [
+
+['<=30', '高', '否', '中', '否'],
+
+['<=30', '高', '否', '优', '否'],
+
+['31-40', '高', '否', '中', '是'],
+
+['>40', '中', '否', '中', '是'],
+
+['>40', '低', '是', '中', '是'],
+
+['>40', '低', '是', '优', '否'],
+
+['31-40', '低', '是', '优', '是'],
+
+['<=30', '中', '否', '中', '否'],
+
+['<=30', '低', '是', '中', '是'],
+
+['>40', '中', '是', '中', '是'],
+
+['<=30', '中', '是', '优', '是'],
+
+['31-40', '中', '否', '优', '是'],
+
+['31-40', '高', '是', '中', '是'],
+
+['>40', '中', '否', '优', '否']
+
+]
+
+# 将数据转为 pandas DataFrame 格式,设置列名
+
+df = pd.DataFrame(data, columns=['Age', 'Income', 'Student', 'Credit', 'BuyComputer'])
+
+# 将分类特征转为数值
+
+df['Age'] = pd.factorize(df['Age'])[0]
+
+df['Income'] = pd.factorize(df['Income'])[0]
+
+df['Student'] = pd.factorize(df['Student'])[0]
+
+df['Credit'] = pd.factorize(df['Credit'])[0]
+
+# 分别提取特征变量 X 和标签 y
+
+X = df.iloc[:, :-1]
+
+y = df.iloc[:, -1]
+
+# 拆分数据集为训练集和测试集
+
+X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=18)
+
+# 创建朴素贝叶斯分类模型,进行训练和预测,并输出预测结果、实际结果和模型
+
+nb = CategoricalNB().fit(X_train, y_train)
+
+y_pred = nb.predict(X_test)
+
+print("预测结果:", y_pred)
+
+print("实际结果:", y_test.values)
+
+print("模型参数:", nb.get_params())
+预测结果: ['是' '是' '是' '是' '是' '是' '是']
+实际结果: ['否' '是' '是' '是' '否' '是' '否']
+模型参数: {'alpha': 1.0, 'class_prior': None, 'fit_prior': True, 'min_categories': None}
+
+
+