import cv2 import numpy as np import mediapipe as mp import time mpHands = mp.solutions.hands hands = mpHands.Hands() # 设置参数,详见 hands.py 中的 __init__ mpDraw = mp.solutions.drawing_utils # 将检测出的手上的标记点连接起来 # 定义时间用于后边的fps计算 pTime = 0 cTime = 0 prototxt_path = "weights/deploy.prototxt.txt" model_path = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel" model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) while True: _, image = cap.read() h, w = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0)) model.setInput(blob) output = np.squeeze(model.forward()) font_scale = 1.0 for i in range(0, output.shape[0]): confidence = output[i, 2] if confidence > 0.5: box = output[i, 3:7] * np.array([w, h, w, h]) start_x, start_y, end_x, end_y = box.astype(np.int) cv2.rectangle(image, (start_x, start_y), (end_x, end_y), color=(255, 0, 0), thickness=2) cv2.putText(image, f"{confidence*100:.2f}%", (start_x, start_y-5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), 2) imgRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 将BGR格式图像转换为RGB results = hands.process(imgRGB) # 对输入图像进行处理,探索图像中是否有手 # print(results.multi_hand_landmarks) # 如果有手,输出手所有0~20个标记点的比例坐标,如果没有,输出None if results.multi_hand_landmarks: for handLms in results.multi_hand_landmarks: # 捕捉画面中的每一只手 for id, lm in enumerate(handLms.landmark): # print(id, lm) h, w, c = image.shape cx, cy = int(lm.x * w), int(lm.y * h) # 根据比例还原出每一个标记点的像素坐标 print(id, cx, cy) # 根据手上标记点的id打印出其相应所在图像中中的像素位置 if id == 4: # 可以根据手上标记点的id获得任意id对应的标记点的信息 cv2.circle(image, (cx, cy), 10, (255, 0, 255), cv2.FILLED) # 这里加粗强调了大拇指上的一个标记点 mpDraw.draw_landmarks(image, handLms, mpHands.HAND_CONNECTIONS) # 给画面中的每一只手进行标点、连线的操作 # 得到fps cTime = time.time() fps = 1/(cTime - pTime) pTime = cTime # 在画面上显示fps cv2.putText(image, 'FPS:' + str(int(fps)), (10, 70), cv2.FONT_ITALIC, 1, (0, 0, 255), 3) cv2.imshow("image", image) if cv2.waitKey(1) == ord("q"): break # 点击窗口X按钮关闭窗口 if cv2.getWindowProperty('image',cv2.WND_PROP_VISIBLE) < 1: break cv2.destroyAllWindows() cap.release()