from 手势识别.generate_data import data_reader import paddle.fluid as fluid from paddle.fluid.dygraph import Linear import paddle as paddle import numpy as np train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256), batch_size=32) class FullNet_Model(fluid.dygraph.Layer): def __init__(self): super(FullNet_Model,self).__init__() self.hidden1 = Linear(input_dim=100,output_dim=100,act='relu') self.hidden2 = Linear(input_dim=100,output_dim=100,act='relu') self.hidden3 = Linear(input_dim=100,output_dim=100,act='relu') self.hidden4 = Linear(input_dim=3*100*100,output_dim=10,act='softmax') def forward(self, input): x = self.hidden1(input) x= self.hidden2(x) x = self.hidden3(x) x= fluid.layers.reshape(x,shape=[-1,3*100*100]) y =self.hidden4(x) return y ''' #用动态图进行训练 with fluid.dygraph.guard(): model = FullNet_Model() model.train() opt =fluid.optimizer.SGDOptimizer(learning_rate=0.001,parameter_list=model.parameters()) epochs_num = 20 #设置迭代次数 for epoch in range(epochs_num): for batch_id,data in enumerate(train_reader()): images = np.array([x[0].reshape(3,100,100) for x in data],np.float32) labels = np.array([x[1] for x in data]).astype('int64') labels = labels[:,np.newaxis] image = fluid.dygraph.to_variable(images) label = fluid.dygraph.to_variable(labels) predict = model(image) loss= fluid.layers.cross_entropy(predict,label) avg_loss= fluid.layers.mean(loss) acc = fluid.layers.accuracy(predict,label) if batch_id != 0 and batch_id % 50 == 0: print( "train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(epoch, batch_id, avg_loss.numpy(), acc.numpy())) avg_loss.backward() opt.minimize(avg_loss) model.clear_gradients() fluid.save_dygraph(model.state_dict(), 'FullNet_Model') # 保存模型 '''