from 手势识别.generate_data import data_reader from 手势识别.build_model import FullNet_Model import paddle.fluid as fluid import paddle as paddle import numpy as np test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32) with fluid.dygraph.guard(): accs=[] model_dict,_=fluid.load_dygraph('FullNet_Model') model = FullNet_Model() model.load_dict(model_dict) #加载模型 model.eval() #开启评估模式 for batch_id,data in enumerate(test_reader()): images = np.array([x[0].reshape(3,100,100) for x in data],np.float32) labels = np.array([x[1] for x in data]).astype("int64") labels = labels[:,np.newaxis] image = fluid.dygraph.to_variable(images) label = fluid.dygraph.to_variable(labels) predict = model(image) acc=fluid.layers.accuracy(predict,label) accs.append(acc.numpy()[0]) avg_acc=np.mean(accs) print('平均准确率为',avg_acc)