from PIL import Image import paddle.fluid as fluid import numpy as np from 手势识别.build_model import FullNet_Model def load_image(path): img =Image.open(path) img = img.resize((100,100),Image.ANTIALIAS) img = np.array(img).astype('float32') img = img.transpose(2,0,1) img = img/255.0 print(img.shape) return img with fluid.dygraph.guard(): infer_path ='test.jpg' model = FullNet_Model() model_dict,_ =fluid.load_dygraph('./FullNet_Model') model.load_dict(model_dict) model.eval() #开启评估模式 infer_image = load_image(infer_path) infer_image = infer_image[np.newaxis,:,:,:] infer_image =fluid.dygraph.to_variable(infer_image) result = model(infer_image) print(np.argmax(result.numpy()))